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QCD

QCD is the theory of the strong interaction, with quarks and gluons
as fundamental fields. This is a gauge theory with the local symmetry
group SU(Nc), acting in the internal space of color degrees of
freedom, with Nc = 3. Leaving Nc as a free parameter allows one
to study the properties of the theory in more generality. The number of
generators of the group SU(Nc) is (N2

c − 1).

Quark fields belong to the defining fundamental representation of the color group,

which is Nc-dimensional, antiquark fields to the complex conjugate representation

of the latter (Nc-dimensional), while gluon fields belong to the adjoint representation

((N2
c − 1)-dimensional). They are distinguished with color indices i, j, I:

ψi, ψj, AI
µ, i, j = 1, . . . , Nc, I = 1, . . . , N2

c − 1.
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The Lagrangian density of the theory is

L = ψj(iγ
µD

j
i,µ −mδ

j
i)ψ

i −
1

4
F IµνF

I,µν.

D is the covariant derivative:

D
j
i,µ = δ

j
i∂µ + ig(T I)jiA

I
µ,

where the T s areNc ×Nc matrix representations of the generators of
the color group acting in the defining fundamental representations. F Iµν
is the gluon field strength. g is the coupling constant (dimensionless).

Note that the masses of all quarks are equal. Necessary for the group
invariance.
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Flavor

QCD is a confining theory, in the sense that quarks and gluons are
not observed in nature as individual particles. Only gauge invariant
objects should be observable. Hadrons are gauge invariant (color
singlet) bound states of quarks and gluons and are observed in nature
as individual free particles.

From the spectroscopy of hadrons one deduces that there are several
types of quark (six) with different masses, having the same properties
with respect to the gluon fields. We have to distinguish them with
a new quantum number, called flavor. One thus has the quarks
u, d, s, c, b, t.
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In the present study, we shall not deal in general with the colored
sector of quarks. We shall mainly be interested by the flavor sector. To
simplify notation, we omit the color indices from the quark and gluon
fields, but keep the flavor indices; the gluons do not have flavor indices.
The quark part of the Lagrangian density can be rewritten in the form

Lq =

Nf
∑

f=1

ψf

(

iγµ(∂µ + igAµ)−mf

)

ψf .

Nf represents the number of flavors, which actually is six, but keeping
it as a free parameter allows us to study the problem in more generality.

The quarks u, d, s are much lighter than the quarks c, b, t, in
the sense of comparing their free masses of the Lagrangian density
(deduced from the spectroscopy of hadrons).
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Flavor symmetry

We consider the idealized situation where all Nf quarks have the
same mass m. We assign the quark and antiquark fields to the Nf -
dimensional defining fundamental representation and to its complex
conjugate one, respectively, with respect to the group SU(Nf) acting
in the internal space of flavors. The quark Lagrangian density becomes

Lq = ψa

(

iγµ(∂µ + igAµ)−m
)

ψa, a = 1, . . . , Nf .

It is invariant under the continuous global transformations of the group,
with spacetime independent parameters. Designating the latter by αA

(A = 1, . . . , N2
f − 1), one has in infinitesimal form

δψa = −iδαA(TA)abψ
b, δψa = iδαAψb(T

A)ba, δAµ = 0,

where TA are Nf ×Nf hermitian matrices.
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The matrices T are representatives of the generators of the group
and hence satisfy the SU(Nf) algebra

[TA, TB] = ifABCT
C, A,B,C = 1, . . . , N2

f − 1.

The fs are the structure constants of the algebra; they are real and
completely antisymmetric in their indices.

Using Noether’s theorem, one finds (N2
f − 1) conserved currents

jAµ (x) = −i
∂Lq

∂(∂µψa)
(TA)abψ

b = ψaγµ(T
A)abψ

b,

∂µjAµ = 0.
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The generators of the group transformations (also called charges) are
obtained from jA0 by space integration:

QA =

∫

d3xjA0 (x).

Because of current conservation, the generators are independent of
time (the fields are assumed to vanish at infinity) and therefore they
commute with the Hamiltonian of the system:

[H,QA] = 0.

They satisfy, as operators, the SU(Nf) algebra

[QA, QB] = ifABCQ
C, A,B, C = 1, . . . , N2

f − 1.
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The system under consideration is thus characterized by the existence ofNf quark

fields with equal free masses m. Since the interaction term itself is invariant under

the group transformations, the latter property (equality of masses) is maintained after

renormalization.

One might also transcribe the transformation properties of the fields into similar

properties of states. Ignoring for the moment the confinement problem and

introducingNf one-particle quark states |p, a > (spin labels omitted), created from

the vacuum state by the fieldsψ+
a , and assuming the vacuum state is invariant under

the transformations of the group, one obtains

Q
A|p, a >= (T

A
)
b
a|p, b > .

[H,QA] = 0 =⇒ the various one-particle states of the fundamental representation

multiplet have equal massesm.

This mode of realization of the symmetry is called the Wigner-Weyl
mode.
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Other types of relationship can be found between observables
involving the multiplet particles.
For instance, we can consider the form factors < p′, b|jAµ (0)|p, a >.
Using the transformation properties of the states and of the current
under the action of the charges (the current belongs to the adjoint
representation and therefore transforms like the charges), one
deduces the property

< p′, b|jAµ (0)|p, a >= (TA)baFµ(p, p
′),

which shows that the whole set of various form factors actually depend
on a single vector form factor. This is of course a manifestation of the
well-known Wigner-Eckart theorem in a more general form.

Analogous properties can also be deduced for scattering amplitudes.
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Considering now the world of hadrons and taking into account the
fact that hadrons are bound states of quarks (constructed from quark
fields), one deduces that the previous properties should also be
reflected in the hadronic world, at least in the limit of equal quark
masses: hadronic states should belong to irreducuble representations
of the group SU(Nf), deduced from their composition law from quark
fields, and should form multiplets with degenerate masses. Their
form factors, scattering amplitudes, coupling constants, should be
expressed, through group matrix elements, in terms of a fewer of them,
etc.
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Explicit flavor symmetry breaking

What happens if we introduce different masses for the quark fields, which ultimately

is the real situation?

ma = m + (∆m)a

Lq = ψa

(

iγ
µ
(∂µ + igAµ) −ma

)

ψ
a
, a = 1, . . . , Nf.

The mass term of the Lagrangian density is no longer invariant under the group

transformations of SU(Nf) and therefore the current obtained previously from

Noether’s theorem is not conserved. One finds

∂
µ
j
A
µ = −i

Nf
∑

a,b=1

(ma −mb)ψa(T
A
)
a
bψ

b 6= 0.

The nonconservation of the current is thus due to the mass differences within the

representation multiplet.
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If, however, the mass differences are much smaller than the
interaction mass scale, which for QCD is of the order of ΛQCD ∼ 300

MeV, one is entitled to treat the effects of the mass differences as
perturbations with respect to the symmetric limit where all the masses
are equal. One might write the Lagrangian density in the form

L = L0 + ∆L,

where L0 is the Lagrangian density with equal masses m and ∆L

corresponds to mass difference terms.
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The above procedure is well defined in QFT, in the sense that it does not destabilize

the results of the symmetric theory after renormalization. The reason is that mass

operators are soft operators, because their quantized dimension is 2 for scalar fields

and 3 for fermion fields, smaller than the dimension 4 of the Lagrangian density and

in particular of its interaction part.

This has the effect that mass terms introduce mild effects through renormalization

and at the end their effects remain perturbative. In particular, they do not affect the

current with anomalous dimensions.

The situation would be different if we had introduced the symmetry breaking

through the coupling constants of the interaction terms, by assigning a different

coupling constant to each flavor type quark. Those have dimension 4 and their effect

on renormalization is hard. At the end, one generally does not find any trace of

approximate symmetry, even if at the beginning the coupling constants had been

only slightly modified.
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Approximate flavor symmetry with hadrons

Since hadrons are bound states of quarks and gluons, SU(Nf)

flavor symmetry, and more generally its approximate realization, should
be reflected in their properties. In the exact symmetry case, hadrons
should be classified in SU(Nf) multiplets with degenerate masses.

Considering the real world with six flavor quarks, we observe that
they are divided in two groups: the light quarks u, d, s and the heavy
quarks c, b, t. The mass differences between the two categories
being large (> 1 GeV), an approximate symmetry can be expected
only within the space of the three light quarks. Therefore, flavor
symmetry would be concerned either with SU(2) (isospin symmetry),
involving the quarks u, d, or with SU(3), involving the quarks u, d, s.
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Concerning isospin symmetry, one notes the approximate equalities
of the masses of the proton and the neutron, of the charged and neutral
pions, of the kaons and of many other groups of particles.

The nucleons and the kaons could be placed in doublet (fundamental)
representations of SU(2) (isospin 1/2), the pions in the triplet (adjoint)
representation (isospin 1), the ∆s in the quadruplet representation
(isospin 3/2), etc.

Since the mass differences within each multiplet are very small, of the order of a

few MeV, one deduces that the difference between the masses of the quarks u and

d is also of the same order:

|md −mu| ∼ a few MeV.

(Precise calculations should also include the contributions of the electromagnetic

interaction, which also are of the same order.)
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For the realization of SU(3) symmetry, the quarks u, d, s are
assigned to the defining representation 3, while their antiparticles to
the representation 3.

Since mesons are made from one quark and one antiquark fields,
they would be classified through the product representation

3⊗ 3 = 8 ⊕ 1,

where 8 is the octet representation and 1 the singlet. On
phenomenological grounds, one notices that for example the vector
mesons ρ, K∗, ω, φ can be grouped in an octet plus a singlet;
similarly for the pseudoscalar mesons π, K, η, η′, although for them
the mass differences are much larger than for the vector mesons (but
the understanding of its cause comes with chiral symmetry).
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Baryons, being made from three quark fields, would be classified
through the product representation

3⊗ 3⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1.

This is the case for example of the baryonsN , Σ, Ξ and Λ, which may
be classified in an octet, of the baryons ∆, Σ′, Ξ′ and Ω, which may
be classified in a decuplet, etc.

The approximate SU(3) symmetry leads to many relations for the
mass differences of a given multiplet (Gell-Mann–Okubo formulas), for
the coupling constants of particles belonging to multiplets, for form
factors, etc.

H. Sazdjian, Student Lectures, Confinement 12, Thessaloniki, 28 August 2016 18



The mass differences within an SU(3) multiplet being of the order of
100 MeV, one deduces that the mass difference between the quark s
and the quarks u and d is of the same order of magnitude and much
greater than the mass difference between u and d:

(

ms − (mu +md)/2
)

∼ 100 MeV ≫ |(md −mu)| ∼ a few MeV.

The approximate SU(3) symmetry can also be used for hadrons
containing heavy quarks; these, however, should stand as
backgrounds for the group analysis.

For example one could apply the analysis to mesons made of qhqℓ,
or to baryons made of qhqℓqℓ, where qh = c, b, t and qℓ = u, d, s.
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Chiral symmetry

Fermion fields may undergo other types of unitary transformation than those met

with the flavor symmetry. They are generated with the inclusion of the matrix γ5 in the

former transformations and are called axial flavor transformations, since they change

the parity properties of fields. In infinitesimal form they are of the type

δψa = −iδαA(TA)abγ5ψ
b, δψa = −iδαAψbγ5(T

A
)
b
a, δAµ = 0,

where the indices a, b, A refer to the flavor group SU(Nf) representations

met before and the T s are (hermitian) matrices representing the corresponding

generators in the fundamental representation.

We consider the quark part of the QCD Lagrangian density with equal mass quarks:

Lq = ψa

(

iγ
µ
(∂µ + igAµ) −m

)

ψ
a
, a = 1, . . . , Nf.
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Under the above transformations, this Lagrangian density is not invariant, because

of the presence of the mass terms:

δL = 2im δα
A
ψa(T

A
) b γ5ψ

b
.

Thus, invariance under axial flavor transformations requires vanishing of the quark

mass terms. Contrary to the ordinary flavor symmetry transformations, equality of

masses is no longer sufficient for ensuring invariance.

In the more general case of unequal masses, the mass terms can be represented

in the form of a diagonal matrix M, such that M = diag(m1,m2, . . . ,mNf
). In

that case the variation of the Lagrangian density is

δL = i δαA ψa{M, TA}ab γ5ψ
b,

where {, } is the anticommutator.
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We now consider the case of massless quarks. The Lagrangian
density is invariant under both the flavor and axial flavor
transformations. The conserved currents are

jAµ (x) = ψaγµ(T
A)abψ

b, ∂µjAµ = 0,

jA5µ(x) = ψaγµγ5(T
A)abψ

b, ∂µjA5µ = 0.

The corresponding charges are defined from space integration on the
current densities:

QA =

∫

d3xjA0 (x), QA5 =

∫

d3xjA50(x).
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The flavor and axial flavor transformations form the set of chiral transformations.

The corresponding charges satisfy the following algebra:

[Q
A
, Q

B
] = ifABCQ

C
, [Q

A
, Q

B
5 ] = ifABCQ

C
5 ,

[Q
A
5 , Q

B
5 ] = ifABCQ

C
, A,B,C = 1, . . . , N

2
f − 1.

Note that the axial charges do not form alone an algebra. The previous algebra can,

however, be simplified and become more transparent. Define

Q
A
L =

1

2
(Q

A − Q
A
5 ), Q

A
R =

1

2
(Q

A
+Q

A
5 ).

(L for left-handed andR for right-handed.) One obtains

[QA
L, Q

B
L ] = ifABCQ

C
L , [QA

R, Q
B
R] = ifABCQ

C
R,

[QA
L, Q

B
R] = 0.
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Therefore, the left-handed and right-handed charges are decoupled
and operate separately. Each of them generate an SU(Nf) group of
transformations. The whole chiral group is then decomposed into the
direct product of two SU(Nf) groups, which will be labeled with the
subscripts L and R, respectively:

Chiral group = SU(Nf)L ⊗ SU(Nf)R.

The ordinary flavor transformations form a subgroup of these,
denoted SU(Nf)V :

Flavor group = SU(Nf)V .

(The subscript V refers to the vector nature of the corresponding currents.)
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Explicit chiral symmetry breaking

In nature, quarks have masses. Therefore, chiral symmetry cannot
be an exact symmetry of the QCD Lagrangian. The quark mass terms
introduce an explicit chiral symmetry breaking.

The symmetry breaking could be treated as a perturbation only if
the quark masses are much smaller than the QCD mass scale. This
eliminates the heavy quarks c, b, t from the domain of investigations.
We are left with the sector of light quarks u, d, s and the approximate
chiral symmetry SU(3)L ⊗ SU(3)R.

What would be the signature of this approximate symmetry in nature?
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The axial charges QA5 are pseudoscalar objects. When acting on a
massive state in the chiral symmetry limit (massless quarks) in the
Wigner-Weyl mode, they would produce new states with the same
mass and spin, but with opposite parity:

QA5 |m, s, p,+, a >= (T ′A)ba|m, s, p,−, b > .

(For chiral singlet representations T ′ = 0.)

Thus, if we adopt the Wigner-Weyl mode of realization for chiral
symmetry, we should have found parity doublets for most of massive
states.

When the light quarks obtain masses, the degeneracy of masses
within the parity doublets would be removed, but the masses would
still remain close to each other.
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However, no parity doublets of massive particles with approximately
equal masses are found in the hadronic world, neither for mesons, nor
for baryons.

This observation forces us to abandon the Wigner-Weyl mode of
realization for chiral symmetry.

The other alternative that remains is the phenomenon of
spontaneous symmetry breaking, also called the Nambu-Goldstone
mode of realization of chiral symmetry.
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Spontaneous chiral symmetry breaking

An inherent assumption within the Wigner-Weyl mode is that the
ground state of the theory (the vacuum state in QFT) is invariant under
the symmetry group of transformations. =⇒ the generators of the
transformations annihilate the vacuum state:

QA|0 >= 0.

Since one-particle states are constructed from the action of the
fields on the vacuum state, the above property guarantees that one-
particle states do transform as elements of irreducible representations
of the symmetry group. Then, the action of a generator on a one-
particle state gives again another one-particle state of the same
representation.
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However, the vacuum state (the ground state) may not be invariant
under the symmetry group of transformations, even if the Lagrangian
is. In that case, it is not a symmetric state and the generators of the
symmetry group do not annihilate it:

QA5 |0 > 6= 0.

It is said that the symmetry is spontaneously broken.

A similar well-known situation is found in the O(N) model or the
sigma-model of spin-0 fields. Here, one studies the properties of the
potential energy at the classical level. According to the values of the
parameters of theory, the potential energy may have a non-symmetric
ground state.
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Shape of the potential energy U .

0

−

√

−2µ2
0
/λ0 0 +

√

−2µ2
0
/λ0

U

φa

The symmetric state is not the ground state, while the ground state is
not symmetric.
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Absence of parity doublets for massive hadronic states forces us
to explore the possibility of spontaneous breaking of chiral symmetry.
The axial charges, when applied on the vacuum state, would give new
states:

QA5 |0 >= |χA,− >, A = 1, ..., 8.

These states have the same quantum properties as their generating
axial charges. In particular, they are pseudoscalar states. Since
in the symmetric limit the charges commute with the Hamiltonian,
their energy is zero. This is possible only if there exist massless
pseudoscalar particles, which might also generate by superposition
other many-particle zero energy states. This is the content of the
Goldstone theorem.

Note: the above states |χA,− > are not one-particle states, but rather a

superposition of many-massless-particle states; their norm is infinite.
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Spontaneous chiral symmetry breaking is thus manifested by the
existence of eight pseudoscalar massless particles (mesons), called
Nambu-Goldstone bosons.

Spontaneous breaking concerns, however, only the axial sector of the
charges. The ordinary flavor symmetry is still realized with the Wigner-
Weyl mode. Therefore the symmetry group SU(3)L ⊗ SU(3)R is
spontaneously broken down to the flavor group SU(3)V :

SU(3)L ⊗ SU(3)R −→ SU(3)V .

In the real world, where quark have masses, chiral symmetry will
undergo an additional explicit symmetry breaking. Under this effect,
the eight Nambu-Goldstone bosons will acquire small masses, as
compared to the masses of massive hadrons.
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Considering the spectroscopy of mesons, one indeed notices the existence of eight

light pseudoscalar mesons, π, K, η. They can be identified, in the chiral limit, with

the eight Nambu-Goldstone bosons.

One would expect that the masses-squared of these particles are proportional to

the masses of the quarks making their content, which would explain in turn the mass

differences and hierarchies between them.

M2
P = O(M).

For the other hadronic massive states, one should have the expansion

M2
h = M2

h0 + O(M),

M2
h0 being the same for all members of a flavor multiplet and different from zero in

the chiral limit. This explains why the lightest pseudoscalar meson masses are more

sensitive to the quark masses than those of the massive hadrons.
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Properties of Goldstone bosons

Consider, in the chiral limit, the coupling of the Goldstone bosons to
the axial-vector current:

< 0|jA5µ|P
B, p > = i δAB pµ FP .

FP 6= 0, otherwise, the axial charges, which are constructed from
jA50, could not create from the vacuum massless states.

Using conservation of the axial current and ∂µjA5µ = i[Pµ, j
A
5µ]:

< 0|∂µjA5µ|P
B, p >= 0 = δAB p

2 FP = δABM
2
P FP = 0 (MP = 0).

⇐⇒ necessity of MP = 0.
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Consider the coupling of a massive pseudoscalar state (for example
a radial excitation of the Goldstone boson) to the axial-vector current:

< 0|jA5µ|P
′B, p > = i δAB pµ FP ′.

Using conservation of the axial current:

< 0|∂µjA5µ|P
′B, p > = 0 = δAB p

2 FP ′ = δABM
2
P ′ FP ′.

=⇒ FP ′ = 0 (MP ′ 6= 0).
=⇒ the massive pseudoscalar states decouple from the axial-vector
current.

Goldstone bosons: MP = 0, FP 6= 0.
Massive pseudoscalar mesons: MP ′ 6= 0, FP ′ = 0.
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When quarks obtain masses, the above properties are modified by terms

proportional to the quark masses.

Goldstone bosons:

M2
P = O(M), FP = FP0 + O(M),

Massive pseudoscalar mesons:

M2
P ′ = M2

P ′0 + O(M), FP ′ = O(M),

with M2
P ≪ M2

P ′, FP ′ ≪ FP .

On experimental grounds, from the leptonic decays of π andK:

Fπ ≃ 92 MeV, FK ≃ 110 MeV.

The quantity (FK/Fπ − 1) ≃ 0.2 measures the order of magnitude of flavor

SU(3) breaking.
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Remark: In QCD, the quark masses appear as free parameters.
Therefore, one expects that all hadronic physical quantities –
masses, decay couplings, coupling constants, form factors, scattering
amplitudes – possess analyticity properties in them, up to the existence
of cuts or branching points.

These objects appear in general as residues of Green’s functions at
physical particle poles. Therefore, they define on-mass shell quantities.
They should not be considered as functions of the mass-shell variables
p2, p′2, etc., but only of the quark mass parameters and of the
momentum transfers or of the Mandelstam variables s, t, u, etc.,
which, eventually may take unphysical values by analytic continuation.

Green’s functions, on the other hand, may be functions of the mass-
shell variables p2, p′2, etc.

H. Sazdjian, Student Lectures, Confinement 12, Thessaloniki, 28 August 2016 37



Low-energy theorems

The decoupling of the massive pseudoscalar mesons from the axial-
vector currents in the chiral limit (massless quarks) allows one to derive
low-energy theorems concerning processes where enters at least one
Goldstone boson. Most of these relations are obtained with the aid of
the Ward-Takahashi identities.

Contrary to the ordinary flavor symmetry, chiral symmetry does not
yield linear relations between matrix elements of multiplets, but rather
leads to relations between processes involving absorption and/or
emission of Goldstone bosons at low momenta:

α → β ←→ α + n1P → β + n2P.
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Goldberger-Treiman relation

Matrix element of the axial-vector current between proton and neutron states in the

isospin limit:

< p(p
′
)| j1+i25µ |n(p) >= up(p

′
)

[

γµγ5gA(q
2
) + qµγ5hA(q

2
)

]

un(p),

where q = (p− p′). gA and hA are the axial-vector form factors of the nucleons.

Take the divergence of the current:

< p(p′
)| ∂µj1+i25µ |n(p) >= −i

(

2MNgA(q
2
) + q2hA(q

2
)

)

up(p
′
)γ5un(p).

The left-hand side has singularities through the contribution of pseudoscalar

intermediate states. For simplicity and illustrative purposes, let us assume that the

latter can be saturated by a series of narrow-width particles (the pion and its radial

excitations). It can be shown that multipion states do not contribute to the final result.
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< p(p
′
)| ∂µj1+i25µ |n(p) >= −2i

{

M2
πFπ

M2
π − q2

gπNN+

∞
∑

n=1

M2
πnFπn

M2
πn − q2

gπnNN

}

×up(p′
)γ5un(p),

where gπNN and gπnNN are the coupling constants of the pseudoscalar mesons

with the nucleons. =⇒

2
M2

πFπ

M2
π − q2

gπNN + 2

∞
∑

n=1

M2
πnFπn

M2
πn − q2

gπnNN = 2MNgA(q
2
) + q

2
hA(q

2
).

Take the limit q2 = 0. In the right-hand side, hA(q
2) does not have a pole at this

value (no massless pseudoscalars in the real world).

FπgπNN +

∞
∑

n=1

FπngπnNN = MNgA(0).
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Consider now the SU(2)⊗ SU(2) chiral limit (massless u and d
quarks). All massive pseudoscalar mesons decouple from the axial-
vector current (Fπn = 0 forM = 0).

gA(0) =
FπgπNN

MN

(M = 0).

This is an exact result of QCD in the SU(2)⊗ SU(2) chiral limit (a
low-energy theorem).

Experimental values are: gA ≃ 1.27, gπNN ≃ 13.15, Fπ ≃ 92.2

MeV, MN = 938.92 MeV. The right-hand side is ≃ 1.29, to be
compared with the left-hand side 1.27. The discrepancy is about
2%, which is typical of the corrections coming from explicit breaking
of SU(2)⊗ SU(2) symmetry.
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Ward-Takahashi identities

Ward-Takahashi identities (WTI) are obtained by considering
correlation functions of axial-vector currents with local operatorsO(x).

∫

dxeiq.x < β|T jA5µ(x) O(0)|α >,

where |α > and |β > are hadronic states.

Consider the divergence of the axial-vector current:

−iqµ
∫

dxeiq.x < β|T jA5µ(x)O(0)|α >=

∫

dxeiq.x < β|T ∂µjA5µ(x)O(0)|α >

+

∫

dxeiq.xδ(x0
) < β|[jA50(x), O(0)]|α > .
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One notices the presence of the equal-time commutator, which
should be evaluated in the theory. Usually, this is again a local operator.

One then takes the limit of low or zero values for q and proceeds with
similar methods as in the Goldberger-Treiman case.

The method can also be generalized by considering multilocal
operators, such as O1(x1)O2(x2) . . . On(xn).

H. Sazdjian, Student Lectures, Confinement 12, Thessaloniki, 28 August 2016 43



Callan-Treiman relation

Choose |α >= |K+ >, |β >= |0 >, O = j4−i5ν and jA5µ = j35µ.
The equal-time commutator of the WTI yields the axial-vector current
j
4−i5
5ν plus Schwinger terms that do not contribute. The matrix element

involving the divergence of the axial-vector current is again saturated
by the pion and its radial excitations. Now the corresponding residues
are proportional to the Kℓ3 form factors with respect to the pion and to
its radial excitations.

One has the definition

< π0
(p′

)|j4−i5ν |K+
(p) >=

1
√

2

[

(p+p′
)νf+(t)+(p−p′

)νf−(t)

]

, t = (p−p′
)
2,

with similar definitions for the radial excitations of the pion.
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Take the limit q → 0 in the WTI, in which case the left-hand side vanishes (no

poles at q = 0). Then the SU(2) ⊗ SU(2) chiral limit is taken (massless u and

d quarks). The massive pseudoscalar states decouple and one ends up with the

relation

f+(M
2
K) + f−(M

2
K) =

FK
Fπ
.

The physical domain of the Kℓ3 form factors (corresponding to the decay

K → πℓν) being limited by the inequalities m2
ℓ ≤ t ≤ (MK −Mπ)

2, the form

factors appearing in the above relation are evaluated at the unphysical point

t = M2
K. Extrapolations (usually linear) are used from the physical domain to

reach that point. The relation is well satisfied, with a few percent discrepancy, on

experimental grounds.

The Callan-Treiman formula establishes a relation between the form factors of the

processK → πℓν and the decay coupling of the processK → ℓν.
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Pion scattering lengths (Weinberg)

Choose in the WTI for |α > and |β > target particles, likeN ,K or π, and forO

and jA5µ axial vector currents with the pion quantum numbers.

Then calculate the divergences of the two currents. The corresponding two

momenta squared q2 and k2 are taken to zero, but q and k are maintained nonzero,

at close values ofMπ. One ends up with formulas for the S-wave scattering lengths

of the processes π + α → π + α, where α is the target particle, much heavier

than the pion:

aI0 = − Mπ

8πF 2
π

(1 +
Mπ

Mα

)
−1

[I(I + 1) − Iα(Iα + 1) − 2],

where I is the total isospin of the state |πα > and Iα the isospin of the target.

The above formula is applied for the scattering processes π +N → π +N and

π +K → π +K.
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When the target is the pion itself, the analysis should be completed by retaining

higher-order terms in the kinematic variables. Crossing symmetry is also used. One

then obtains the π − π scattering amplitude at low energies:

Mac,bd =
1

F 2
π

{δacδbd(s−M
2
π) + δabδcd(t−M

2
π) + δadδbc(u−M

2
π)},

where a, b, c, d are the pion isospin indices and s, t, u the Mandelstam variables.

The S-wave scattering lengths are

a
0
0 =

7Mπ

32πF 2
π

≃ 0.16M
−1
π , a

2
0 = − 2Mπ

32πF 2
π

≃ −0.046M
−1
π .

The above predictions are well satisfied experimentally within 10 − 25% of

discrepancy. Direct measurements of the scattering lengths are, however, not

possible because of the instability of the pion under weak or electromagnetic

interactions. Elaborate extrapolation procedures are used for the extraction of the

scattering lengths from high-energy data.
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Adler-Weisberger relation

The starting point is the same as for the calculation of the scattering lengths.

One chooses in the WTI for |α > and |β > nucleon states. For O and jA5µ one

chooses axial vector currents with the pion quantum numbers. The corresponding

two momenta q and k are taken to zero. In this limit, there is in addition a

nucleon pole that contributes, yielding as a residue the axial-vector form factor at

zero momentum transfer. At the end of the operations, one obtains the isospin

antisymmetric part of the pion-nucleon scattering amplitude at an unphysical point.

The latter is reexpressed by means of a dispersion relation in terms of an integral

over physical pion-nucleon cross sections. The final formula is

g2
A = 1 − 2F 2

π

π

∫ ∞

ν0

dν

ν

[

σπ
−p

(ν) − σπ
+p

(ν)

]

, ν = q.p .

The right-hand side yields for gA the value 1.24, to be compared to its experimental

value 1.27.
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Gell-Mann–Oakes–Renner formulas

Choose in the WTI |α >= |β >= |0 > and for O the divergence of the axial-

vector current. One has

∂νjB5ν = iψa{M, TB}ab γ5ψ
b.

The operators vB = −iψa(TB)abγ5ψ
b define the pseudoscalar densities. They

transform, in the chiral limit, under the action of the axial charges as

[Q
A
5 , v

B
] = idABCu

C
+ i

2

3
δABu

0
,

where the us are the scalar densities

u
C

= ψa(T
C
)
a
bψ

b
, C = 1, . . . , 8, u

0
= ψaψ

a
,

and the coefficients d are fully symmetric in their indices; they result from the

anticommutators of the matrices T : {TA, TB} = dABCT
C + 1

3δAB1.
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The WTI takes the form

−iqµ
∫

dxeiq.x < 0|T jA5µ(x) ∂
νjB5ν|0 >

=

∫

dxeiq.x < 0|T ∂µjA5µ(x) ∂
νjB5ν|0 >

+

∫

dxe
iq.x
δ(x

0
) < 0|[jA50(x), ∂

ν
j
B
5ν]|0 > .

Intermediate states are only pseudoscalar mesons. In the limit q = 0, no poles in

the first term.

δAB

{

M2

PA
F 2

PA
+

∞
∑

n=1

M2

PnA
F 2

PnA

}

= − tr{TA, {M, TB}} < 0|1
3
u0|0 > .
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We have seen that

M2

PA
= O(M), FPA = FP 0 + O(M),

M
2

PAn
= M

2
Pn0 + O(M), F

PAn
= O(M),

=⇒
F 2

PAn
= O(M2

) ≪ O(M).

Keep onlyO(M) terms:

δABM
2

PA
F 2
P0 = − tr{TA, {M, TB}} < 0|1

3
u0|0 > .

M = (mu −md)T
3 − 1√

3
(2ms −mu −md)T

8 + 1
3(mu +md +ms)1;

tr(TATB)= 1
2δAB.
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Defining

B = −
1

3F 2
P 0

< 0|u0|0 >, m̂ =
1

2
(mu +md),

one finds, neglecting electromagnetism and π0 − η − η′ mixings,

M2
π+ = M2

π0 = 2m̂B,

M2
K+ = (ms +mu)B, M2

K0 = (ms +md)B,

M2
η =

2

3
(2ms + m̂)B.

Verification of the SU(3)V Gell-Mann–Okubo formula (in the isospin
limit):

4M2
K − 3M2

η −M
2
π = 0.
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The masses MP and decay couplings FP are physical quantities;
threfore they do not depend on renormalization mass scales. However,
the quark masses and the scalar densities are renormalized under
interaction and depend on the renormalization mass scale, although
their product does not. One must specify, when providing values for
the quark masses, at which scale they have been evaluated. (Usually,
they are chosen at a mass scale µ = 2 GeV.) Also the ratios of quark
masses are renormalization group invariant.

Numerically, one finds from the above formulas

ms

m̂
= 26.0,

mu

md

= 0.65,
ms

md

= 21.5.
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We come back to the vacuum expectation value of the scalar density< 0|u0|0 >.

With respect to flavor SU(3), u0 is a singlet operator. However, with respect to the

chiral group SU(3)L ⊗ SU(3)R, it has a more complicated structure.

Introduce left-handed and right-handed quark and antiquark fields,

ψ
a
L =

1

2
(1−γ5)ψ

a
, ψ

a
R =

1

2
(1+γ5)ψ

a
, ψLa =

1

2
ψa(1+γ5), ψRa =

1

2
ψa(1−γ5).

u
0
= ψaψ

a
= ψRaψ

a
L + ψLaψ

a
R.

The left-handed and right-handed fields belong to representations of different groups,

SU(3)L and SU(3)R. One finds that u0 belongs to the (3L, 3R) + (3L, 3R)

representation of the chiral group. This is not the singlet representation.

If the vacuum were invariant under chiral transformations, then < 0|u0|0 > would

be zero, according to the Wigner-Eckart theorem. Its nonvanishing is a sign that the

vacuum is not invariant under chiral transformations and therefore chiral symmetry is

spontaneously broken. < 0|u0|0 > represents an order parameter of spontaneous

chiral symmetry breaking. Analogy with ferromagnetism.
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Chiral perturbation theory

After the successes of the predictions of low energy theorems, obtained in the

chiral limit or in leading order of explicit chiral symmetry breaking, one naturally is

interested by the calculation of corrective terms to the leading-order quantities.

Essentially, two types of correction arise.

1) Quark mass terms.

2) Many-Goldstone-boson state contributions. These do not contribute at leading

orders because of damping factors coming from phase space coefficients. At

nonleading orders, they are no longer negligible. They produce unitarity cuts

with corresponding logarithmic functions of the momenta and the masses. Early

calculations were done by Li and Pagels (1971).

Calculation of the nonleading chiral symmetry corrections through a systematic

perturbative approach was proposed by Glashow and Weinberg (1967) and by

Dashen (1969).
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Initial calculations were done with the use of the Ward-Takahashi
identities. But at higher-orders, this method becomes rapidly very
complicated.

Weinberg has made several observations.

1) In spite of the fact that we are in the domain of strong interactions,
the couplings of the Goldstone bosons with other particles and with
themselves turned out to be relatively weak.

2) These couplings are reminiscent of derivative coupling types.

3) All results of low-energy theorems could be obtained (often more
easily) by using phenomenological Lagrangians involving only the
hadrons entering into the concerned processes and satisfying chiral
invariance; it was sufficient to do the calculations at the tree level.
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Chiral effective field theories

How to construct chiral invariant hadronic Lagrangians?

Basic ingredient: the chiral transformation properties of the Goldstone boson fields.

The latter are obtained by studying the action of the chiral charge commutators on

them. Equations are obtained that can be solved. The solutions indicate, that the

Goldstone boson fields transform nonlinearly under chiral transformations.

Similarly, one obtains the chiral transformation properties of massive hadronic

states. The latter transform linearly, but the transformation coefficients are nonlinear

functions of the Goldstone boson fields.

The construction of chiral invariant Lagrangians necessitate the introduction of

chiral covariant derivatives which also allow the introduction of the interaction terms.

(Weinberg (1968).)
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Once chiral invariant Lagrangians are constructed, one can go further and

implement nonleading-order calculations.

One introduces explicit chiral symmetry breaking through mass terms of Goldstone

bosons.

Next, one calculates loop corrections. Since Goldstone boson couplings are of

the derivative type, each loop introduces, through its vertices, additional powers of

the Goldstone boson momenta. At low energies, the latter are small, of the same

order of magnitude as the Goldstone boson masses. Increasing the number of loops

increases in turn the powers of the momenta and hence decreases the magnitude of

the terms in comparison with the leading ones.

Therefore, one is led to a systematic power counting rule. The Goldstone boson

masses squared M2
P and momenta squared, q2, k2, etc., are considered as

perturbation theory parameters. Their higher powers will correspond to higher-order

terms. Thus, the first-order corrections will involve at most one-loop diagrams.
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A crucial point that remains to be dealt with is renormalization.

In order for the phenomenological hadronic Lagrangian to describe correctly the

underlying theory (QCD), it is necessary to consider the most general chiral invariant

Lagrangian. Therefore, the latter will involve an infinite series of terms with an

increasing number of derivatives and powers of the masses. It will involve, from

the start an infinite number of unknown constants. However, the Lagrangian will be

ordered according to the number of derivatives or powers of masses it involves.

For instance, for the purely Goldstone boson Lagrangian one has the expansion

L = L2 + L4 + · · · + L2n + · · · ,

where the subscript 2n designates the total number of the derivatives and of the

power of the Goldstone boson masses. At each finite order of the expansion, there

corresponds a finite number of unknown coupling constants. The leading-order

contributions come from L2, those of the next-to-leading order from L2 + L4, etc.
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Calculation of loops introduces divergences. These are then
absorbed by the renormalization of the coupling constants of the
higher-order parts of the Lagrangian. These coupling constants are
called low energy constants (LEC). They also contain information
about the contributions of the high-mass particles which do not appear
explicitly in the Lagrangian.

Thus in the Lagrangian describing π − π interaction, the ρ-meson is
absent, but since the Lagrangian is describing only low-energy regions,
the ρ-meson field is in some sense integrated out from the total
Lagrangian of the theory and its effects are enclosed in the resulting
LECs and the accompanying expressions.

At each finite order of the perturbation theory, there are only a
finite number of unknown constants, which should be determined from
experiment. Then the theory becomes predictive at that order.
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The phenomenological chiral hadronic Lagrangians that are constructed from the

previous principles define the chiral effective field theories designed to describe

definite sectors of hadrons.

The chiral effective field theory for Goldstone bosons was first adapted to QCD by

Gasser and Leutwyler (1984-1985).

Applications concerned processes involving π, K , η mesons, leading to

improved precision with respect to the low-energy theorem results.

The method was generalized including baryon-Goldstone boson interactions.

In conclusion, the chiral effective field theory approach enables one to convert,

at low energies and in the hadronic world, the highly complicated nonperturbative

structure of QCD into a more transparent and familiar framework, with the sole aid of

the symmetry properties of the theory.
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Anomalies

Invariance properties of Lagrangians established at the classical level
may not survive quantization. In QFT, the renormalization process
deals with divergent quantities, and some conventional operations, like
the interchange of limits or translation of integration variables, may not
be legitimate.

Question raised with the study of the decay process of the neutral
pion into two photons (π0→ γγ). Using the usual Ward-Takahashi
identities (WTI) of chiral symmetry, one derives a low-energy theorem
stating that the corresponding decay width should vanish in the chiral
limit, while, on experimental grounds, it is far from vanishing or being
small. This paradox has been analyzed by Adler, and Bell and Jackiw
(1969).
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In QED with massless fermions, coupled to external axial-vector currents and

pseudoscalar densities, triangle diagrams, corresponding to fermion loops with two

vector vertices and one axial-vector vertex, violate, through the WTI, the conservation

of the axial-vector current. This result is unchanged (unrenormalized) by higher-order

radiative corrections (Adler and Bardeen, 1969).
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Adler has proposed to include the above anomalous contribution
in the divergence of the axial-vector current, which now reads, for
massive fermions,

∂µj5µ = 2imψγ5ψ +
e2

16π2
ǫµνλσFµνFλσ,

where F is the electromagnetic field strength.

Thus, in the presence of electromagnetism, the axial symmetry is
explicitly broken, irrespective of the fermion masses, a result not
evident at the classical level.
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The general structure of anomalies in the case of non-Abelian currents has

been studied by Bardeen (1969), and Wess and Zumino (1971). The anomalous

contributions appear through the presence of an odd number of axial-vector currents

at the vertices of fermion one-loop diagrams, the number of vertices varying from

three to five.

Considering the case of one axial-vector current in the presence of other vector

currents, the expression of its divergence becomes

∂
µ
j
A
5µ = iψ{M, T

A}γ5ψ +
Nc

16π2
ǫ
µνλσ

trf(T
A
T
B
T
C
) F

B
µνF

C
λσ

+
g2Nf

32π2
ǫ
µνλσ

δA0

N2
c−1
∑

a=1

G
a
µνG

a
λσ, A = 0, 1, . . . , N

2
f − 1,

where the F s are non-Abelian color singlet field strengths of external vector currents,

playing the role of sources, theGs the gluon field strengths,Nf andNc the numbers

of quark flavors and colors, respectively.
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We note that in the flavor singlet case, the anomaly receives also
a contribution from the gluon fields. The latter is a dimension-four
operator and, contrary to the usual mass terms, its effect is hard and
could not be treated in general as a perturbation.

The presence of the anomaly in the divergence of the singlet axial-
vector current explains the large mass value of the η′ meson, which
cannot be considered, in the chiral limit, as a Goldstone boson (’t Hooft,
1986).
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Anomaly cancellation

The presence of anomalies destroys the renormalizability and
unitarity properties of field theories. This is not the case of QCD itself,
since it does not contain axial-vector couplings; the anomalies may
appear here only when external currents are considered.

However, the situation is different with the Standard Model, which
contains axial-vector couplings through its weak interaction part. A
general theorem states that the anomalies will intrinsically disappear
if the sum of the charges of all fermions of the theory is equal to
zero. This is indeed the case of the Standard Model, where the sum
of the charges of the quarks and of the leptons cancels to zero, thus
confirming the consistency of the theory (Bouchiat, Iliopoulos, Meyer,
1972).
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Anomaly matching

The anomalies play also an important role in the analysis of the
phases of a theory. Such an attempt has been undertaken by ’t Hooft
with the concept of ’naturalness’ (1979).

If physics is described by different effective theories at different
scales, the anomaly structure should be preserved from one scale to
the other when the transition concerns only one part of the particles.
(This is a consequence of the zero-anomaly condition for the global
theory.)
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This requirement can be applied in particular to QCD. The latter is described

at high energies by elementary quark and gluon fields, while at low energies it

is described by hadrons, leptons remaining the same. As a consequence of the

global zero-anomaly condition, anomalies resulting from both descriptions should

match each other. This is not a trivial requirement, since quarks belong to the triplet

representation of the flavor group (in the case of SU(3)V ), while hadrons belong to

higher representations, like octets, decuplets, etc. The net result of the investigation

shows that when the number of quark flavors is greater than two, only the phase of

spontaneous chiral symmetry breakdown can fulfill the anomaly matching condition.

The above analysis brings therefore an indirect theoretical proof of spontaneous

chiral symmetry breaking in QCD with more than two quark flavors. This result

has been completed with the proof of Vafa and Witten (1983-1984) that in vector-

like gauge theories, such as QCD, the vector flavor group and parity cannot be

spontaneously broken.
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