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Motivations, advantages and difficulties

Gauge invariant objects expected to provide a more precise
description of physical observables.
Better infrared behavior, free of spurious singularities.

Necessity of introducing gauge field path-ordered phase factors
(parallel transporters) to ensure gauge invariance.
Gauge invariant quantities are generally extended objects =⇒ more
complicated mathematical properties.

Difficulties in introducing functional inverses of gauge invariant
Green’s functions and defining proper vertices, which play a
fundamental role in establishing Dyson-Schwinger equations in QFT.
One is obliged to work constantly with Green’s functions.

2



Method of approach

Functional method based on functional differentiation of path-ordered
phase factors. One establishes functional relations between various
Green’s functions with different phase factor lines.

The kernels of the equations that are obtained are represented by
Wilson loops, which are gauge invariant quantities. They are suitable
to describe large-distance properties of QCD, since they are saturated
at large distances by minimal surfaces, which satisfy the area law.
(Makeenko and Migdal, 1980).

References: arXiv, 0709.0161, P.R. D 77 (2008) 045028; arXiv, 1003.5099, P.R. D

81 (2010) 114008; arXiv, 1304.0961, P.R. D 88 (2013) 025034.

Properties of Wilson loops with minimal surfaces: F. Jugeau and H. S., arXiv, hep-

ph/0305021, N.P. B 670 (2003) 221.
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Phase factor paths along polygonal lines

We work in the framework of QCD theory, with the color gauge
group SU(Nc), with the quark fields in the defining fundamental
representation.

Choice of the path for the phase factor lines in the Green’s functions
is arbitrary. Nevertheless, the space of arbitrary types of line seems
overcomplete, leading to unnecessary complications.

Paths along polygonal lines are of particular interest, since they can
be decomposed into a succession of straight line segments. The latter
have a Lorentz invariant form and have an unambiguous geometrical
limit when their end points approach each other.
For our study, the polygonal lines form a complete set of paths for the
quark Green’s functions.
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A phase factor with a single straight line segment going from x to y:

U(y, x) = Pe
−ig

∫ y

x

dzµAµ(z)
.

For a polygonal line Ln between the points x and x′ with n segments
and (n− 1) junction points y1, y2, . . ., yn−1, one has

U(x′, x;Ln) = U(x′, yn−1)U(yn−1, yn−2) . . . U(y2, y1)U(y1, x).

x

y1

y2

y3

x′

L5

y4
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Rigid path derivation

For a rigid straight line segment a displacement of one end of the
segment generates also displacements of the interior points of the
segment with appropriate weights. (Mandelstam, 1968.)

∂U(y, x)

∂yα
= −igAα(y)U(y, x)+ig(y−x)

β
∫ 1

0

dλλU(1, λ)Fβα(λ)U(λ, 0),

∂U(y, x)

∂xα
= +igU(y, x)Aα(x)+ig(y−x)

β
∫ 1

0

dλ (1−λ)U(1, λ)Fβα(λ)U(λ, 0).

Conventions to represent the contributions of the integrals:

δ̄U(y, x)

δ̄yα+
≡ ig(y − x)β

∫ 1

0

dλ λU(1, λ)Fβα(λ)U(λ, 0),

δ̄U(y, x)

δ̄xα−
≡ ig(y − x)β

∫ 1

0

dλ (1 − λ)U(1, λ)Fβα(λ)U(λ, 0).
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Gauge invariant Green’s functions along polygonal lines

Gauge invariant Green’s functions with polygonal lines can be
classified according to the number of segments they contain.

The gauge invariant two-point quark Green’s function with
a polygonal line with n segments and n− 1 junction points
y1, y2, . . .,yn−1 between the segments is defined as

S(n)(x, x
′
; yn−1, . . . , y1) = −

1

Nc

〈ψ(x′
)U(x′, yn−1) . . . U(y1, x)ψ(x)〉,

where each U is along a straight line segment.

For one straight line, one has:

S(1)(x, x
′) ≡ S(x, x′) = −

1

Nc

〈ψ(x′)U(x′, x)ψ(x)〉.
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Pictorially:

S(x, x′) ≡ S(1)(x, x
′) = −

1
Nc

< ψ(x′)U(x′, x)ψ(x) >

x x′

S(3)(x, x
′; y2, y1) = −

1
Nc

< ψ(x′)U(x′, y2)U(y2, y1)U(y1, x)ψ(x) >

x x′

y1

y2
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Wilson loops

Φ(C) =
1

Nc

trPe
−ig

∮

C

dxµAµ(x)
.

Vacuum expectation value:

W (C) = 〈Φ(C)〉.

Functional representation:

W (C) = eF (C).

(Dotsenko and Vergeles, Makeenko and Migdal, 1980.)
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If the contour C is a polygon Cn with n sides and n successive
junction points x1, x2, . . . , xn, then we write:

W (xn, xn−1, . . . , x1) = Wn = eFn(xn, xn−1, . . . , x1) = eFn.

W5

x4

W5(x5, x4, . . . , x1) = eF5(x5, . . . , x1)

x5

x1

x2

x3
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Functional relations for Green’s functions

Use of equations of motion of quark fields and integrations yield functional relations

between the various Green’s functions with polygonal lines. (Integration symbols

omitted.)

S(n)(x, x
′
; yn−1, . . . , y1) = S(x, x′

) eFn+1(x
′
, yn−1, . . . , y1, x)

+

(

δ̄S(x, yn)

δ̄yα+
n

+ S(x, yn)
δ̄

δ̄yα−
n

)

γ
α
S(n+1)(yn, x

′
; yn−1, . . . , y1, x).

+ +
= +

x′ x x′ x′x

S S

x′

x x

+

y2 y2

y3 y3

W4

S(3) S S(4) S(4)

y1 y1

y1 y1

y2 y2

=⇒ S is the only dynamically independent gauge invariant quark Green’s function.
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Equations of motion of Green’s functions

(iγ.∂(x)−m)S(n)(x, x
′; yn−1, . . . , y1) = iδ4(x−x′)eFn(x, yn−1, . . . , y1)

+iγµ
δ̄S(n)(x, x

′; yn−1, . . . , y1)

δ̄xµ−
.

x x′
(iγ.∂x −m)

(iγ.∂x −m)

+

+

=
x x′
×

x′x

×

=

W3

iδ4(x− x′) S(3)
x′x

S(3)

y1 y2 y1 y2 y1 y2

iδ4(x− x′)S S
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Integrodifferential equation for the two-point function

S satisfies the following equation of motion:

(iγ.∂(x) −m)S(x, x′) = iδ4(x− x′) + iγµ
δ̄S(x, x′)

δ̄xµ−
.

The rigid path derivative δ̄S(x, x′)/δ̄xµ− is calculated using the
functional relations between Green’s functions. One establishes the
following integrodifferential equation for the Green’s function S(x, x′):

(iγ.∂(x)−m)S(x, x′) = iδ4(x−x′)+iγµ
{

K2µ(x
′, x, y1)S(2)(y1, x

′;x)

+
∞
∑

n=3

Knµ(x
′, x, y1, . . . , yn−1)S(n)(yn−1, x

′;x, y1, . . . , yn−2)
}

.
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The kernel Kn contains globally n derivatives of Wilson loops with a
(n+ 1)-sided polygonal contour and also the Green’s function S and
its derivative.

The above equation is the analog of the Dyson-Schwinger equation.
Two main differences are to be noted:

1) In the r.h.s., the whole set of Green’s functions with polygonal lines
appears, instead of a single S.
However, the Green’s functions S(n) themselves are related to the
simplest Green’s function S with functional relations. Therefore, this
is ultimately an equation for S.

2) The action of the kernels Kn is not convolutive. Does not lead
to factorization in momentum space. Forces us to work with Green’s
functions.
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The dominant parts of the kernel are expected to be those containing
the least number of derivatives of Wilson loops.

Thus the leading term is the second-order term (the first-order one
being zero for symmetry reasons).

δ̄S(x, x′)

δ̄xµ−
≃ −

∫

d4y1

δ̄2F3(x
′, x, y1)

δ̄xµ−δ̄y
α1+
1

eF3(x
′
, x, y1) S(x, y1) γ

α1 S(y1, x
′
).

x x′

W3iδ4(x− x′)

+=
x x′

S ×

×

y1

SS(iγ.∂x −m)
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Two-dimensional QCD

Many simplifications in two-dimensional QCD at large Nc.
Crossed diagrams and quark loop contributions disappear. (’t Hooft,
1974.)
Wilson loop averages are exponential functionals of the areas of the
surfaces enclosed by the contours. (Kazakov and Kostov, Bralić,
1980.) The area law naturally produced.
The second-order derivative of the logarithm of the Wilson loop
average is a delta-function. Kernels with more derivatives than two
disappear.

=⇒ Equation of S with the lowest-order kernel becomes an exact
equation.
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(iγ.∂ −m)S(x) = iδ2(x) − σγµ(gµαgνβ − gµβgνα)x
νxβ

×
[

∫ 1

0

dλλ2S((1 − λ)x)γαS(λx) +

∫ ∞

1

dξS((1 − ξ)x)γαS(ξx)
]

.

(σ is the string tension.)

The interaction term is quasi-local in x: x is integrated along a line
and not in two dimensions. =⇒ the equation can also be studied in
instantaneous type limits. The interaction is covariantly instantaneous
with respect to any of the components of x.
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Study of the equal-time instantaneous limit of S(x), x0 = 0

S(x1, x2) = S(x) = −
1

Nc

〈ψ(x2)U(x2, x1)ψ(x1)〉.

Considering S(x) at x0 = 0 in the axial gauge A1 = 0, reduces the
phase factor to 1 and S(x) becomes identical to the ordinary quark
Green’s function

Sax(x) =
1

Nc

〈ψ(x1)ψ(x2) 〉.

=⇒

S(x)
∣

∣

∣

x0=0
= Sax(x)

∣

∣

∣

x0=0
.
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Sax(x) satisfies a Dyson-Schwinger equation which can be solved
exactly. (The whole interaction reduces in this gauge to the
instantaneous one-gluon exchange.)

Passing to momentum space:

∫

dp0

2π
Sax(p) =

1

2

(

− γ1 sin θ(p1) + cos θ(p1)
)

.

θ, an odd function of p1, satisfies an integral equation

p1 cos θ(p1) −m sin θ(p1) = σ

∫

dk1

2π

1

(p1 − k1)2
sin

(

θ(p1) − θ(k1)
)

,

which has a nonperturbative solution, determined numerically.

(Bars and Green, 1978; Li, Wilets and Birse, 1987.)
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Back to the the gauge invariant function S(x) and its equation.
Passing to momentum space:

S(p) = γ.pF1(p
2) + F0(p

2).

F1 and F0 satisfy two coupled equations. In the instantaneous
limit, one finds that the only infrared finite solution is given by the
parametrization

∫

dp0

2π
S(p) =

1

2

(

− γ1 sin θ(p1) + cos θ(p1)
)

,

where θ satisfies the same equation as the one in the axial gauge.
The two Green’s functions, S and Sax are therefore identical in the
instantaneous limit, in agreement with the equality found previously
from general arguments.
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Resolution of the covariant equation

We assume that the quark and the gluon fields carry positive energies
and satisfy causality. One then establishes that the Green’s function
S satisfies a generalized form of the Källén-Lehmann representation,
with spectral functions having as support the real timelike axis of p2.
This implies definite analyticity properties in the complex plane.

The equation of S can then be studied through the singularities of S
that may be present. The problem can be solved explicitly in analytic
form.

The covariant functions F1(p
2) and F0(p

2) have an infinite number
of branch points at mass values M2

1 , M
2
2 , . . . , M

2
n, . . ., ordered with

increasing values; in particular M1 > m. The power of the singularity
is −3/2.
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The solutions are:

F1(p
2
) = −i

π

2σ

∞
∑

n=1

bn
1

(M2
n − p2)3/2

,

F0(p
2
) = i

π

2σ

∞
∑

n=1

(−1)
n
bn

Mn

(M2
n − p2)3/2

,

or for S,

S(p) = −i
π

2σ

∞
∑

n=1

bn
(γ.p + (−1)n+1Mn)

(M2
n − p2)3/2

.

TheMns and bns satisfy algebraic equations that are solved numerically.

For large n:

M
2
n ≃ σπn, bn ≃

σ2

Mn

, for σπn ≫ m
2
.
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Asymptotic behaviors:

F1(p
2) =

|p2|→∞

i

p2
,

F0(p
2) =

|p2|→∞

im

p2
, m 6= 0,

F0(p
2) =

|p2|→∞

2iσ

Nc

〈ψψ〉

(p2)2
, m = 0.
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Conclusion

1) The equations satisfied by gauge invariant quark Green’s functions may provide

complementary informations about the spectral properties of quark and gluon fields,

not available with ordinary Green’s functions.

2) In two-dimensional QCD at large-Nc, the spectral functions are infrared finite

and lie on the positive real axis of p2. No singularities in the complex plane or on the

negative real axis have been found. =⇒ Quarks contribute with positive energies.

3) The singularities are represented by an infinite number of threshold type

singularities, characterized by positive masses Mn (n = 1, 2, . . .). The

corresponding singularities are stronger than simple poles and this feature might

prevent observability of quarks as free particles.

4) The threshold masses Mn represent dynamically generated masses and

maintain the scalar part of the Green’s function at a nonzero value.

26


