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Introduction and motivations

Methods of resolution of quantum field theory equations are very rare.

Usually one uses perturbation theory with respect to the coupling constant

g starting from free field theory. The size of (dimensionless) g gives an

estimate of the strength of the interaction.

The presence in the theory of other parameters than the coupling constant

may allow use of perturbation theory with respect to those parameters.

This may enlarge the possibilities of approximate resolutions of the theory.
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A new parameter may emerge if the system under consideration satisfies

symmetry properties with respect to a group of internal transformations.

For example, constituents of the system (particles, nucleons, nuclei,

energy excitations, etc.) belonging to different species, may have the same

masses and possess the same dynamical properties with respect to the

interaction. In such a case interchanges between these constituents would

not modify the physical properties of the system. The latter interchanges

might also be considered in infinitesimal or continuous forms like for

the rotations in ordinary space. The system then satisfies an invariance

property under continuous symmetry transformations.

In many cases, the invariance might also be only approximate.

3



Among the continuous symmetry groups, two play an important role in

physical problems.

The first is O(N), the orthogonal group, generated by the N ×N

orthogonal matrices. It has N(N − 1)/2 parameters and generators.

The second is SU(N), the unitary group, generated by the N ×N

unitary complex matrices, with determinant = 1. It has (N2 − 1)

parameters and generators.

In particle and nuclear physics, one has the approximate isospin symmetry

group SU(2) and the approximate flavor symmetry group SU(3). Using

these approximations, one can establish relations between masses and

physical parameters of various particles, prior to solving the dynamics of

the system under consideration.
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In the cases of the groups O(N) and SU(N) mentioned above, N has

a well defined fixed value in each physical problem, N = 2, 3, . . . , etc.

It is however tempting to consider the case where N is a free parameter

which can be varied at will. In particular, large values of N , with the limit

N → ∞, seem to be of interest.

At first sight, it might seem that taking large values of N would lead

to more complicated situations, since the number of parameters increases

and the group representations become intricate. However, it was noticed

that when the limit is taken in an appropriate way, in conjunction with the

coupling constant of the theory, it may lead to simpler results than the

cases of finite N .

If this happens, then an interesting perspective of resolution opens.
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One may solve the problem in the simplified situation of the limit

N → ∞ and then, to improve the predictions, consider the contributions

of the terms of order O(1/N) as a perturbation.

If the true N is sufficiently large, then the zeroth-order calculation done

in the limit N → ∞ would already provide the main dominant aspects of

the solution of the physical problem under consideration. This is the spirit

of the O(1/N) expansion method in quantum field theory.

We will illustrate the method by two explicit examples:

1) The O(N) model of scalar fields.

2) The two-dimensional model of Gross–Neveu with global U(N)

symmetry of fermion fields and discrete chiral symmetry.
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Historical background

The first who noticed the interest of the large-N limit was Stanley in

statistical physics (1968), who used it in the framework of the Heisenberg

model (spin-spin interactions). He showed that in that limit the model

reduces to the spherical approximation of the Ising model, which was

soluble.

H. E. Stanley, Phys. Rev. 176 (1968) 718.

The first who introduced the method in quantum field theory is Wilson

(1973), who was aware of the work of Stanley in statistical physics. He

applied it to the O(N) model of scalar fields and to the U(N) model of

fermion fields.

K. Wilson, Phys. Rev. D 7 (1973) 2911.

7



In 1974, ’t Hooft applied it to Quantum Chromodynamics (QCD), the

newly born theory of the strong interaction, which is a gauge theory

with the non-Abelian gauge group SU(3)c in the internal space of color

quantum numbers. (Not to confound with the global flavor symmetry

group SU(3) met previously.)

This theory cannot be solved with the only large-N limit, but many

simplifications occur. In two space-time dimensions, it is almost soluble.

G. ’t Hooft, Nucl. Phys. B72 (1974) 461.

G. ’t Hooft, Nucl. Phys. B75 (1974) 461.
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Reviews

E. Witten: Baryons in the 1/N expansion,

Nucl. Phys. B160 (1979) 57.

E. Witten: The 1/N expansion in atomic and particle physics,

Lectures at the Cargese Summer School, “Recent Developments in Gauge Theories”,

1979, edited by G. ’t Hooft et al. (Plenum, N.Y., 1980).

S. Coleman: 1/N ,

Lectures at the Erice International School of Subnuclear Physics, 1979 (Plenum, N.Y.,

1980), p. 805. Also in “Aspects of Symmetry” (Cambridge University Press, 1985), p.

351.

Yu. Makeenko: Large-N gauge theories,

Lectures at the 1999 NATO-ASI on “Quantum Geometry” in Akureyri, Iceland; arXiv:

hep-th/0001047.
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The scalar O(N) model

The O(N) model is a theory of N real scalar fields φa

(a = 1, 2, . . . , N), with a quartic interaction, invariant under the O(N)

group of transformations. This group is similar in structure to the rotation

group, but acts in the internal space of N species of the fields.

L =
1

2
∂µφ

a∂µφa
−

1

2
µ2

0φ
aφa

−
λ0

8N
(φaφa)2.

(Summation on repeated indices is understood. ∂µ = ∂
∂xµ, etc.) µ

2
0 and

λ0 are real parameters, representing the bare mass squared and the bare

coupling constant. In four space-time dimensions the coupling constant is

dimensionless.

S. Coleman, R. Jackiw and H. D. Politzer, Phys. Rev. D 10 (1974) 2491.
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Semiclassical or tree approximation.

Search for the ground state of the theory. The lagrangian density is

composed of the kinetic energy density minus the potential energy density.

For constant fields, the kinetic energy vanishes. The potential energy

density is:

U =
1

2
µ2

0φ
aφa +

λ0

8N
(φaφa)2.

Quartic function of the φs. It is evident that the energy is not bounded

from below if λ0 < 0. In this case no stable ground state.

We assume henceforth that λ0 > 0.
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λ0 > 0.

Two cases have to be distinguished: 1) µ2
0 > 0; 2) µ2

0 < 0.

1) µ2
0 > 0.

Shape of U .

0

0

U

φa
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The minimum of the energy corresponds to the values φa = 0, (a =

1, . . . , N). The φs in this case can be considered as excitations from the

ground state.

Considering the lagrangian, we can interpret it as describing the dynamics

of N particles with degenerate masses, equal to µ0, interacting by means

of the quartic interaction. We have complete O(N) symmetry between

the particles.

This mode of symmetry realization is called the Wigner mode or the

normal mode.
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2) µ2
0 < 0.

Shape of U .

0

−

√

−2µ2
0
N/λ0 0 +

√

−2µ2
0
N/λ0

U

φa
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The minimum of U is no longer φa = 0, but a shifted value at

φa = ±

√

−
2µ2

0N

λ0
≡< φ > for one of the as. There is a degeneracy

between the different φas.

Redefine the fields around the new ground state.

χ = φN
− < φ >, πa = φa, a = 1, . . . , N − 1.

the potential energy becomes

U = −µ2
0χ

2 +
λ0

2N
< φ > χ3 +

λ0

8N
(πaπa + χ2)2.

The fields πa have no longer mass terms, while the field χ has a mass

term. We have now the masses:

m2
πa = 0, a = 1, . . . , N − 1, m2

χ = −2µ2
0.
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The O(N) symmetry that we had initially has partially disappeared.

There is now O(N − 1) symmetry in the space of the fields πa.

It is said that the O(N) symmetry has been spontaneously broken. This

happened because the ground state of the theory is not symmetric, while

the lagrangian is.

This is accompanied with the appearance of (N − 1) massless fields.

These are called Goldstone bosons.

This way of realization of the symmetry is called the Goldstone mode.

In particle and nuclear physics, the isospin SU(2) symmetry and the

quark flavor SU(3) symmetry are realized with the Wigner mode.

The chiral SU(3)R × SU(3)L symmetry is realized with the Goldstone

mode.
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Quantum effects

We want now to take into account the quantum effects of the model that we are

considering. For this, it is necessary to compute the quantum corrections that contribute

to the potential energy. In quantum field theory, these are represented by the radiative

corrections.

The definition of U is enlarged. The new potential energy is called the effective

potential.

Ueff = Uclass + Urad .

Urad = sum of all connected loop diagrams with external constant fields.

The calculation of Urad is almost impossible in exact form in the general case: there

are infinities of complicated diagrams to calculate.

However, the use of the 1/N expansion method simplifies considerably the situation.

The leading terms of this expansion are calculable.
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Propagators, vertices, loops

The radiative corrections can be calculated starting from the situation where µ2
0 > 0.

Radiative corrections will modify the value of µ2
0 into a new value µ2. It is then sufficient

to study at the end the analytic continuation of µ2 into negative values.

We therefore consider the initial lagrangian

L =
1

2
∂µφ

a∂µφa −
1

2
µ2

0φ
aφa −

λ0

8N
(φaφa

)
2.

The free propagator of the field φa is obtained from the quadratic parts of L (not

containing the coupling constant λ0)

Dab
0 (p) = δabD0(p) =

∫

d4xeip.x < 0|T (φa
(x)φb

(0))|0 >,

D0(p) =
i

p2 − µ2
0 + iε

⇐⇒
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The vertex is represented by the four-field interaction term (contact interaction).

a

a

b

b

−i
λ0
8N

= O(N−1)

Radiative corrections are represented by loops.

a a

b a

a

b

b
c

a
a

a

b
b

b

O(N0)

O(N−1) O(N−2)

c
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Examples of two-loop diagrams.
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The auxiliary field method

Simplify the analysis of the 1/N expansion by introducing an auxiliary

field describing collectively the composite field φaφa.

Add to the lagrangian a new term:

L
′ = L +

N

2λ0

(

σ −
λ0

2N
φaφa

− µ2
0

)2

.

The σ field does not have kinetic energy. Its equation of motion yields its

definition:

σ =
λ0

2N
φaφa + µ2

0,

which shows that the added term in the lagrangian is zero. Thus the new

lagrangian is equivalent to the former one:

L
′
≈ L .
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L
′ =

1

2
∂µφ

a∂µφa +
N

2λ0

σ2
−

1

2
σφaφa

−
Nµ2

0

λ0

σ.

Propagators:

D0φ(p) =
i

p2 + iε
⇐⇒ = O(N0),

D0σ(p) =
iλ0

N
⇐⇒ = O(N−1).

Vertex σφφ:

a

a

= O(N0).
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Higher-order diagrams.

O(N0) O(N0)

O(N−1) O(N−1) O(N−2)
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Important property: Internal σ propagators give each O(N−1)

contributions. =⇒ Their contributions are negiligible. One can ignore

all radiative corrections (loops) containing such propagators.

The only contributions that survive in radiative corrections are one-loop

diagrams of φ fields.

At leading-order in the 1/N expansion the theory is explicitly calculable.
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Effective potential

Ueff = Uclass + Urad .

Uclass = −
N

2λ0

σ2 +
1

2
σφaφa +

Nµ2
0

λ0

σ.

Urad =

+ + + . . .
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S. Coleman and E. Weinberg, Phys. Rev. D 7 (1973) 1888.

R. Jackiw, Phys. Rev. D 9 (1974) 1686.

Ueff = −
N

2λ0

σ2 +
1

2
σφaφa +

Nµ2
0

λ0

σ +
N

2

∫

d4k

(2π)4
ln(k2 + σ).

(Integral over euclidean momenta.)

We are interested by the stationary point of Ueff (ground state).

∂Ueff

∂σ
= −

N

λ0

σ +
1

2
φaφa +

Nµ2
0

λ0

+
N

2

∫

d4k

(2π)4
1

(k2 + σ)
,

∂Ueff

∂φa
= φaσ, a = 1, . . . , N.
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The integral
∫

d4k
(2π)4

1
(k2+σ)

is divergent for values of k → ∞.

To cure this problem, one absorbs the divergent parts into the bare

coupling constant and the mass, defining finite quantities.

Asymptotic behavior of the integrand:

1

k2 + σ
→

k2→∞

1

k2
−

σ

(k2)2
+ O(1/(k2)3).

The first two terms lead to ultraviolet divergences by integration. We

cannot, however, subtract them as they stand, since the second term

would lead to a new artificial infrared divergence.

We have to incorporate in the second term a mass factor in the denominator

to render it softer in the infrared region.
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We add and subtract in
∂Ueff

∂σ
the following quantities:

N

2

∫

d4k

(2π)4
1

k2
−
N

2
σ

∫

d4k

(2π)4
1

k2(k2 +M2)
,

where M is an arbitrary mass term.

The result is

∂Ueff

∂σ
= −Nσ

( 1

λ0

+
1

2

∫

d4k

(2π)4
1

k2(k2 +M2)

)

+
1

2
φaφa

+N
( µ2

0

λ0

+

∫

d4k

(2π)4
1

k2

)

+
N

32π2
σ ln(

σ

M2
).

The infinite integrals, together with the bare coupling constant and the

bare mass term, may define finite renormalized quantities.
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Finite coupling constant and mass term:

1

λ(M)
=

1

λ0

+
1

2

∫

d4k

(2π)4
1

k2(k2 +M2)
,

µ2(M)

λ(M)
=
µ2

0

λ0

+

∫

d4k

(2π)4
1

k2
.

The finite quantities depend on the arbitrary mass parameter M . For

each fixed value of M , they take a corresponding value.

One can better study this dependence by comparing for instance the

value of the coupling constant λ(M) to a reference value λ1 ≡ λ(M1)

corresponding to a reference mass parameter M1.
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Renormalization group equation (RGE)

One obtains from the comparison of the corresponding two equations:

1

λ(M)
=

1

λ1

−
1

32π2
ln(
M2

M2
1

).

This equation is called the renormalization group equation and plays an

important role for the analysis and understanding of the properties of the

theory.

λ(M) =
λ1

1 −
λ1

32π2 ln(
M2

M2
1
)
.

When M increases starting from M1, λ(M) increases. When M

reaches the value Mcr = M1 exp(16π
2/λ1), λ(M) diverges. This is a

sign of the instability of the theory for large values of λ.
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The RGE can also be formulated in the form of a differential equation.

Defining

M
∂λ(M)

∂M
= β(λ(M)),

one finds from the finite form of λ(M)

β(λ) =
λ2

16π2
> 0,

which shows that λ(M) is an increasing function of M .
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Physical interest of the RGE

In perturbation theory, when calculating radiative corrections, one usually

finds powers of the quantity λ2 ln(p2/M2), where p is a representative

of the momenta of the external particles. Even if λ is chosen small, at

high energies, i.e., at large values of p, the logarithm may become large

enough to invalidate perturbative calculations.

However, since the logarithm depends on M for dimensional reasons,

one can choose the latter of the order of p to maintain the logarithm

small. This could be useful, if on the other hand λ remains bounded or

small at these values of M . The RGE precisely gives us the answer to

that question, indicating the way λ behaves at large values of M .
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Coming back to our theory, we see from our previous results that this is

not the case here: λ, on the contrary, increases with M and diverges at

Mcr. The theory is ill-defined at high energies. In x-space, high energies

correspond to short distances. The interaction becomes stronger when

the distance between two sources or two particles decreases. A similar

behavior is also found in Quantum Electrodynamics (QED). These theories

are better defined at low energies.

Theories for which the coupling constant decreases at high energies or at

short distances are called asymptotically free.
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The ground state

The effective potential.

Ueff =
1

2
φaφaσ −

Nσ2

2λ
(1 +

λ

64π2
) +

Nµ2σ

λ
+

Nσ2

64π2
ln(

σ

M2
).

Minimum of the effective potential.

∂Ueff

∂σ
= −

Nσ0

λ
+

1

2
φa

0φ
a
0 +

Nµ2

λ
+

N

32π2
σ0 ln(

σ0

M2
) = 0,

∂Ueff

∂φa
= φa

0σ0 = 0, a = 1, . . . , N.
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Two possibilities.

1) φa
0 = 0 (a = 1, . . . , N), σ0 6= 0.

From the first equation one obtains

σ0

(

1 −
λ

32π2
ln(

σ0

M2
)

)

= µ
2
.

The presence of the logarithm imposes σ0 > 0. For small values of λ, one has

µ2 > 0. By continuity to larger values, one should search for positive solutions of σ0.

Let σ0 be the solution of the equation for a certain domain of λ and µ2. One should

redefine σ from the value of σ0:

σ′
= σ − σ0.

The corresponding shift of σ in the lagrangian gives back a common mass to the fields

φa. We are in a situation where the O(N) symmetry is realized in the Wigner mode.
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2) σ0 = 0.

From the first equation:

1

2
φa

0φ
a
0 +

Nµ2

λ
= 0. =⇒ µ2 < 0.

φ
a
0φ

a
0 = −

2Nµ2

λ
.

There is a degeneracy of solutions for the φa
0 s. One can choose for example:

φ
a
0 = 0, a = 1, . . . , N − 1, φ

N
0 =

√

−
2Nµ2

λ
≡< φ > .

One then develops φN around < φ >:

χ = φN− < φ > .

The symmetry is realized in the Goldstone mode with the presence of (N − 1)

massless fields.
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Summary

The radiative corrections introduce limitations into the validity domain

of the model.

The coupling constant increases at high energies and diverges at some

critical mass scale.

The ground state equations also introduce new constraints on the

parameters of the model.

The two modes of realization of the symmetry, found at the classical

level, remain valid within the restricted domain of the parameters.

These results are obtained at the leading-order of the 1/N expansion.
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The Gross-Neveu model

D. J. Gross and A. Neveu, Phys. Rev. D 10 (1974) 3235.

This is a two-dimensional model of N fermions, interacting by means of

a four-fermion interaction, satisfying global U(N) symmetry. The system

satisfies also a discrete chiral symmetry, which prevents the fermions from

having a mass.

L = ψ
a
iγµ∂µψ

a +
g0

2N
(ψ

a
ψa)2, g0 > 0.

In two space-time dimensions, the Dirac fields have two components and

the Dirac matrices γ reduce to the Pauli 2 × 2 matrices σ:

γ0 = σz, γ1 = iσy, γ5 = γ0γ1 = σx.
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Discrete chiral transformations:

ψa
→ γ5ψ

a, ψ
a
= ψ†aγ0

→ −ψ
a
γ5.

A mass term is not invariant under these transformations:

mψ
a
ψa

→ −mψ
a
ψa.

Hence, the fermions should be massless.

The fermion field has mass dimension 1/2 =⇒ the coupling constant

g0 is dimensionless.
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The auxiliary field

Introduction of the auxiliary field σ by adding to the lagrangian a defining

term:

L
′ = L −

N

2g0

(

σ +
g0

N
ψ

a
ψa

)2

.

L
′ = ψ

a
iγµ∂µψ

a
−
N

2g0
σ2

− σ ψ
a
ψa.
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The effective potential

Ueff = Uclass + Urad .

Calculations are done with a constant value of the σ field, which corresponds to the

vacuum expectation value of σ(x), < 0|σ(x)|0 >, which is translation invariant and

hence independent of x. The fermion fields have zero vacuum expectation values, hence

do not contribute to the external fields of Ueff .

Ueff =

�
�
�

�
�
�

++ + · · ·
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Ueff = N
( σ2

2g0
−

∫

d2k

(2π)2
ln(1 +

σ2

k2
)
)

,

∂Ueff

∂σ
= 2σN

( 1

2g0
−

∫

d2k

(2π)2
1

k2 + σ2

)

.

(The integration momenta are euclidean.) As for the scalar case, we

have to isolate the divergent part of the integral. Again we must introduce

a mass parameter in the subtracted term to avoid infrared divergence.

∂Ueff

∂σ
= σN

[ 1

g0
− 2

∫

d2k

(2π)2
1

k2 + µ2

]

+
σN

2π
ln(
σ2

µ2
).
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We deduce the renormalization of the coupling constant into a finite

value:
1

g(µ)
=

1

g0
− 2

∫

d2k

(2π)2
1

k2 + µ2
, g > 0,

∂Ueff

∂σ
= σN

[ 1

g(µ)
+

1

2π
ln(
σ2

µ2
)
]

.

g dependes on the mass parameter µ. Its relation to another choice, µ1,

with g(µ1) ≡ g1, is:

1

g(µ)
=

1

g1
+

1

2π
ln(
µ2

µ2
1

),

or,

g(µ) =
g1

1 + g1
2π

ln(µ
2

µ2
1
)
.
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g(µ) decreases when µ increases. We also have:

µ
∂g

∂µ
= −

g2

π
= β(g) < 0.

The theory is asymptotically free.

The minimum of the effective potential is obtained from:

∂Ueff

∂σ
= σ0N

[ 1

g(µ)
+

1

2π
ln(
σ2
0

µ2
)
]

= 0,

which gives:

σ0 = µe−π/g.

We must shift the field σ in the lagrangian by this quantity:

σ = σ′ + σ0.
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The lagrangian becomes:

L
′ = ψ

a
iγµ∂µψ

a
−
N

2g0
(σ′ + σ0)

2
− σ0ψ

a
ψa

− σ′ψ
a
ψa.

We notice the appearance of a mass term of fermions, with mass

MF = σ0 = µe−π/g.

The theory was invariant at the beginning under the discrete chiral

transformations, imposing masslessness of the fermions, but now, after

renormalization and the shift to the ground state of the energy, the

fermions have acquired a mass. This phenomenon is called dynamical

mass generation and is due to the spontaneous breaking of the discrete

chiral symmetry.
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On the other hand, MF is a physical quantity and should not depend on the particular

choices of the arbitrary mass parameter µ. One verifies that it satisfies the equation

dMF

dµ
=

∂MF

∂µ
+

1

µ
β(g)

∂MF

∂g
= 0.

MF is renormalization group invariant.

Once it is fixed, the two other parameters, g and µ should disappear from the theory.

Any choice of µ is compensated by a corresponding choice of g, to produce MF .

At the beginning, the theory had a dimensionless parameter g. Now it has a dimensionful

parameter, MF , which is fixed by the physical conditions and sets the mass scale of the

theory. There is no longer a free parameter in the theory. This phenomenon is called

mass transmutation.
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Summary

The Gross-Neveu model displays many interesting features of quantum

field theory and illustrates in two dimensions several phenomena –

asymptotic freedom, dynamical mass generation, mass transmutation –

expected to occur in four-dimensional theories, which, however, are not

completely or explicitly solved there.
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Conclusion

The 1/N expansion method allows us to solve, at leading order of

the expansion, theories and models nonperturbatively, probing directly

dynamical phenomena which would not be reached in ordinary perturbation

theory based on expansions with respect to the coupling constant.

This method is also applicable to QCD, but because of the presence

of the gluon fields, which belong to the adjoint representation of the

gauge symmetry group, its effects are less spectacular. Nevertheless, many

simplifications occur and several qualitative features can be drawn about

the properties of the theory.
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