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Objective

Investigate the possibilities of deriving integral or integro-differential
equations for gauge invariant Green’s functions. Those involve path-
ordered gluon field phase factors. Here, we concentrate on two-point
quark Green’s functions, in which the path-ordered phase factor is
made of a single straight line or more generally of a skew-polygonal
line.

The starting point is a particular representation for the quark
propagator in the presence of an external gluon field, where it is
expressed as a series of terms involving path-ordered phase factors
along successive straight lines. Then the corresponding quantized
Green’s function becomes expressed in terms of Wilson loops having
skew-polygonal contours.
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Definitions and conventions

Path-ordered gluon field phase factor along a line Cyx joining a point x to a point

y, with an orientation defined from x to y:

U(Cyx; y, x) ≡ U(y, x) = Pe
−ig

Z y

x

dz
µ
Aµ(z)

.

Parametrizing the line C with a parameter λ, 0 ≤ λ ≤ 1, such that x(0) = x and

x(1) = y, a variation of C induces the following variation of U (Mandelstam, 1968):

δU(1, 0) = −igδx
α
(1)Aα(1)U(1, 0) + igU(1, 0)Aα(0)δx

α
(0)

+ig

Z 1

0

dλU(1, λ)x′β(λ)Fβα(λ)δxα(λ)U(λ, 0),

where x′ = ∂x
∂λ

and Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν].

For paths defined along rigid lines, the variations inside the integral are related,

with appropriate weight factors, to those of the end points.
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Considering now a rigid straight line between x and y, a derivation at
the end points yields:

∂U(y, x)

∂yα
= −igAα(y)U(y, x)+ig(y−x)β

∫ 1

0

dλλU(1, λ)Fβα(λ)U(λ, 0),

∂U(y, x)

∂xα
= +igU(y, x)Aα(x)+ig(y−x)

β

∫ 1

0

dλ (1−λ)U(1, λ)Fβα(λ)U(λ, 0).

Conventions to represent the contributions of the integrals:

δ̄U(y, x)

δ̄yα+
≡ ig(y − x)β

∫ 1

0

dλλU(1, λ)Fβα(λ)U(λ, 0),

δ̄U(y, x)

δ̄xα−
≡ ig(y − x)β

∫ 1

0

dλ (1 − λ)U(1, λ)Fβα(λ)U(λ, 0).
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Wilson loop

Φ(C) =
1

Nc
trPe

−ig

∮

C

dxµAµ(x)
.

Vacuum expectation value:

W (C) = 〈Φ(C)〉.

Functional representation:

W (C) = eF (C).

In perturbation theory, F (C) is given by the sum of all connected diagrams, the

connection being defined with respect to the contour C (Dotsenko and Vergeles,

1980). For large contours and large Nc, F (C) is proportional to the minimal surface

with contour C (Makeenko and Migdal, 1980).
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If the contour C is a skew-polygon Cn with n sides and n successive
marked points x1, x2, . . ., xn at the cusps, then we write:

W (xn, xn−1, . . . , x1) = Wn = eFn(xn, xn−1, . . . , x1) = eFn.

x2

x3
x4

x5

W5

W5(x5, x4, . . . , x1) = eF5(x5, . . . , x1)

x1
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Two-point Green’s functions

The gauge invariant two-point quark Green’s function is defined as

Sαβ(x, x
′;Cx′x) = −

1

Nc
〈ψβ(x

′)U(Cx′x;x
′, x)ψα(x)〉.

For skew-polygonal lines with n sides and n − 1 junction points y1, y2,
. . .,yn−1 between the segments, we define:

S(n)(x, x
′; yn−1, . . . , y1) = −

1

Nc

〈ψ(x′)U(x′
, yn−1)U(yn−1, yn−2) . . . U(y1, x)ψ(x)〉.

For one straight line, one has:

S(1)(x, x
′) ≡ S(x, x′) = −

1

Nc
〈ψ(x′)U(x′, x)ψ(x)〉.
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Pictorially:

S(x, x′) ≡ S(1)(x, x
′) = − 1

Nc
< ψ(x′)U(x′, x)ψ(x) >

x x′

S(3)(x, x
′; y2, y1) = − 1

Nc
< ψ(x′)U(x′, y2)U(y2, y1)U(y1, x)ψ(x) >

x x′

y1

y2
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Quark propagator in the external gluon field

A two-step quantization. One first integrates with respect to the quark
fields. This produces in various terms the quark propagator in the
presence of the gluon field. Then one integrates with respect to the
gluon field through Wilson loops.

To make Wilson loops appear, one needs an appropriate
representation for the quark propagator in extenal field. We use
a representation which involves phase factors along straight lines
together with the full quark Green’s function S(1) ≡ S (F. Jugeau and
H.S., 2003). Generalization of a representation introduced by Eichten
and Feinberg, 1981, for heavy quarks.
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The quark propagator in the external gluon field A, designated by
S(x, x′;A), satisfies the usual equation

(
iγ.∂(x) −m− gγ.A(x)

)
S(x, x′;A) = iδ4(x− x′).

The starting point of the representation is the gauge covariant
composite object S̃0(x, x

′), made of a free fermion propagator S0(x, x
′)

(without color group content) multiplied by the path-ordered phase
factor U(x, x′) taken along the straight line xx′:

[
S̃0(x, x

′)
]a
b
≡ S0(x, x

′)
[
U(x, x′)

]a
b
.

[a, b: color indices.]
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S̃0 satisfies the following equation with respect to x:

(
iγ.∂(x) −m− gγ.A(x)

)
S̃0(x, x

′) = iδ4(x− x′) + iγα
δ̄U(x, x′)

δ̄xα+
S0(x, x

′).

The quantity −i(iγ.∂(x) −m − gγ.A(x))δ4(x − x′) is the inverse of the
quark propagator S(x, x′;A) in the presence of the external gluon field
A. Reversing the equation with respect to S(A)−1, one obtains an
equation for S(A) in terms of S̃0:

S(x, x′;A) = S̃0(x, x
′) +

∫
d4x′′

δ̄S̃0(x, x
′′)

δ̄x′′α−
γαS(x′′, x′;A).
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In order to sum self-energy effects, one can use for the expansion of
the propagator S(A), instead of the free propagator S0, the full gauge
invariant Green’s function S. We define a generalized version of the
gauge covariant object S̃0 by replacing in it S0 with S:

[
S̃(x, x′)

]a
b
≡ S(x, x′)

[
U(x, x′)

]a
b
.

Proceeding as before one arrives at the expansion of S(A) around S.
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S(x, x
′
;A) = S(x, x

′
)U(x, x

′
)+

„

S(x, y)
δ̄U(x, y)

δ̄yα−
+
δ̄S(x, y)

δ̄yα+
U(x, y)

«

γ
α
S(y, x

′
;A).

Pictorially:

x x′

S(A)
x x′S

= + +

x x′ x x′

y y

U

+
+

This yields an expansion of S(A) in terms of the gauge invariant
Green’s function S and explicit phase factors along straight lines.
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Functional relations for Green’s functions

Systematic use of the expansion of the quark propagator in external
field.

Consider the Green’s function S(n):

S(n)(x, x
′; yn−1, . . . , y1) = −

1

Nc

〈ψ(x′)U(x′
, yn−1)U(yn−1, yn−2) . . . U(y1, x)ψ(x)〉.

Integrate with respect to the quark fields:

S(n)(x, x
′; yn−1, . . . , y1) =

1

Nc

〈U(x′
, yn−1)U(yn−1, yn−2) · · ·U(y1, x)S(x, x′;A)〉.

Use the expansion found for S(A):

S(x, x′;A) = S(x, x′)U(x, x′)+

„

S(x, y)
δ̄U(x, y)

δ̄yα−
+
δ̄S(x, y)

δ̄yα+
U(x, y)

«

γ
α
S(y, x′;A).
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S(n)(x, x
′; yn−1, . . . , y1) = S(x, x′) eFn+1(x

′
, yn−1, . . . , y1, x)

+

„

δ̄S(x, yn)

δ̄yα+
n

+ S(x, yn)
δ̄

δ̄yα−n

«

γ
α
S(n+1)(yn, x

′; yn−1, . . . , y1, x).

Graphical representation for n = 3:

+ +
= +

x′ x x′ x′x

S S

x′

x x

+

y2 y2

y3 y3

W4

S(3) S S(4) S(4)

y1 y1

y1 y1

y2 y2
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Equations of motion

(iγ.∂(x) −m)S(n)(x, x
′; yn−1, . . . , y1) = iδ4(x− x′)eFn(x, yn−1, . . . , y1)

+iγµ
δ̄S(n)(x, x

′; yn−1, . . . , y1)

δ̄xµ−
.

Graphical representation of this equation for n = 1 and n = 3:

x x′
(iγ.∂x −m)

(iγ.∂x −m)

+

+

=
x x′
×

x′x

×
=

W3

iδ4(x− x′) S(3)
x′x

S(3)

y1 y2 y1 y2 y1 y2

iδ4(x− x′)S S

16



Integral equation

δ̄S/δ̄xµ− and δ̄S(n)/δ̄x
µ− can be expressed, with the aid of the

functional relations, in terms of Wilson loop derivatives and Green’s
functions.

δ̄S(n)

δ̄xµ−
=
δ̄Fn+1

δ̄xµ−
S(n)

+
( δ̄

δ̄xµ−
−
δ̄Fn+1

δ̄xµ−

)(δ̄S(x, yn)

δ̄yα+
n

+ S(x, yn)
δ̄

δ̄yα−n

)
γα S(n+1).

At the end, one obtains for δ̄S/δ̄xµ− a series expansion in terms of the
Green’s functions S(n), each term involving a kernel expressed in terms
of Wilson loop derivatives and Green’s function S and its derivative.
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δ̄S(x, x′)

δ̄xµ−
= K1µ−(x′, x)S(x, x′) +K2µ−(x′, x, y1)S(2)(y1, x

′;x)

+
∞∑

n=3

Knµ−(x′, x, y1, . . . , yn−1)S(n)(yn−1, x
′;x, y1, . . . , yn−2).

The kernel Kn contains globally n derivatives of Wilson loops and also
the Green’s function S and its derivative.
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Graphical representation up to third-order terms:

×

=

x x′
x x′
×

−
×

x′x

×

×

F4
+

×

S

S

×

S S

x′x
×

F4

x′x

S S

F4
+ ×+

 

×

×
!

××

x′

×

F4

x

S
S

y1 y2

F2

y1 y2 y1 y2 y1 y2

×
x x′ x x′

F3
×

×
S

S(2)

y1 y1

x′x
S(3)

y1 y2

x′x
S(3)

y1 y2
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At short-distances, governed by perturbation theory, each derivation
introduces a new power of the coupling constant and therefore the
dominant terms in the expansion are the lowest-order ones. At large-
distances, Wilson loops are saturated by the minimal surfaces having
as supports the contours. Here also, the dominant contributions come
from the lowest-order derivative terms. Therefore the expansion above
can be considered in general as a perturbative one.
Thus the dominant part of the kernel comes from the second-order
term (the first-order one being zero for symmetry reasons).

(iγ.∂(x) −m)S(x, x′) = iδ4(x− x′) + iγµ
δ̄S(x, x′)

δ̄xµ−
.

δ̄S(x, x′)

δ̄xµ−
≃ −

∫
d4y1

δ̄2F3(x
′, x, y1)

δ̄xµ−δ̄yα1+
1

eF3(x
′, x, y1) S(x, y1) γ

α1 S(y1, x
′).
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Analyticity properties of the Green’s function

One of the advantages of paths along straight lines is the fact
that the expressions of the corresponding Green’s functions become
dependent only on the end points of the paths. Simple transition to
momentum space by Fourier transformation. Much of the informations
on Green’s functions are provided from momentum space, since it is
there that their spectral properties are determined.

However, the quark two-point gauge invariant Green’s functions hold
a particular position. Because of confinement of colored objects, it
is not possible to cut the path joining the quark to the antiquark by
inserting in it a complete set of physical states, which are color singlets.
This feature seems to suggest that gauge invariant two-point Green’s
functions should not have any singularities.
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The situation is, however, more complex. Gauge invariant two-point
Green’s functions possess singularities originated from perturbation
theory. In the integral equation it is the presence of the free quark
propagator which generates the singularities of the complete solution.
An analysis, starting from perturbation theory, is therefore necessary.

We admit that, in a domain where perturbation theory is valid, it is
meaningful to consider quarks and gluons as physical particles with
positive energies, described by corresponding physical states. It is
then advantageous to consider the path-ordered phase factor U in its
representation given by the series expansion in terms of the coupling
constant g, the nth-order term of the expansion containing (n−1) gluon
fields (n ≥ 1).
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S(x, x′) = −
1

Nc

〈ψ(x′)U(x′
, x)ψ(x)〉

= −
1

Nc



〈ψ(x′)

»

1 − ig

Z

C
x′x

dz
α1
1 Aα1

(z1) +

+
∞
X

n=2

(−ig)
n

Z

C
x′x

· · ·

Z

C
x′x

dz
α1
1 · · · dz

αn
n θC(x

′
, zn, . . . , z1, x)

×Aαn(zn) · · ·Aα1
(z1)

–

ψ(x)〉

ff

.

In operator formalism, the above Green’s function involves two kinds of orderings for

its defining fields. The first is the path-ordering (or P -ordering) which concerns the

color index arrangements of the gluon fields according to their positions on the path.

The second is the time-ordering (T -ordering) or chronological product which enters

in the definitions of Green’s functions and operates once the P -ordering is done.
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Once the timelike or spacelike nature of the distance between the
quark and the antiquark is fixed, the nature of the mutual distances of
the gluon fields in the Green’s function S is also fixed in the same way,
because of their alignement along the segment joining the quark to the
antiquark. Therefore, the chronological product of the nth-order terms
in S reduces to two terms, defined by the relative time between the
quark and the antiquark. For timelike (x′ − x), if (x

′0 − x0) > 0 then
the T -ordering will coincide with the P -ordering, while if (x

′0 − x0) < 0

the T -ordering will be the opposite of the P -ordering (with a change of
sign for the fermion fields), the color indices being already fixed from
the P -ordering. We are in a situation which is very similar to the case
of the ordinary two-point function, with the difference that for an nth-
order term there are (n + 1) fields instead of two ((n − 1) gluon, one
quark and one antiquark fields).
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Using for each of the two products which make the T -product the
spectral analysis with intermediate states, taking into account the
bounds on the parameters of the P -ordering and using causality, one
arrives at a generalized form of the Källén–Lehmann representation
for the Green’s function S in momentum space, in which the cut starts
on the real axis from the quark mass squared m2 and extends to
infinity. The generalization is due to the fact that each gluon field is
integrated along the path and this introduces, when using for the latter
a dimensionless parameter λ varying between 0 and 1, a multiplicative
factor (x′−x), which is converted in momentum space into a derivation
operator; each such factor increases by one unit the power of the
denominator of the dispersion integral.
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Fourier transform of the Green’s function S(x, x′), taking also into
account translation invariance:

S(x, x′) = S(x− x′) =

∫
d4p

(2π)4
e−ip.(x− x′) S(p).

S(p) has the following representation in terms of real spectral functions
ρ
(n)
1 and ρ(n)

0 (n = 1, . . . ,∞):

S(p) = i

∫ ∞

0

ds′
∞∑

n=1

[
γ.p ρ

(n)
1 (s′) + ρ

(n)
0 (s′)

]

(p2 − s′ + iε)n
.

We assume that the above representation, obtained from the domain
of perturbation theory, remains also valid in non-perturbative regimes.
One expects that the resulting singularities are strong enough to
screen the quark pole and other physical type singularities.
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