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Approach based on the use of the path-ordered phase factor along a
line C joining a point x to a point y (link):

U(Cyx; y, x) ≡ U(y, x) = Pe
−ig

∫ y

x

dzµAµ(z)
,

where Aµ =
∑

aA
a
µt

a, Aa
µ (a = 1, . . . , N2

c − 1) are the gluon fields and
ta the generators of the color gauge group SU(Nc) in the fundamental
representation. U is a covariant object under gauge transformations:

U(C; y, x) −→ Ω(y)U(C; y, x)Ω−1(x).

Together with the quark fields, the object

ψ(y)U(C; y, x)ψ(x) is gauge invariant.
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Another gauge invariant object is obtained by considering the trace
of U in color space along a closed contour C:

Φ(C) =
1

Nc

trcPe
−ig

∮

C

dxµAµ(x)
.

This defines the Wilson loop.
Its vacuum expectation value is denoted W (C):

W (C) = 〈Φ(C)〉A.

Wilson (1974) showed that in the static limit W (C) is a useful tool for
devising a criterion for the confinement of quarks (area law).
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Try to deduce the large-distance properties of the theory from the
properties of the Wilson loop.
Nambu (1979), Polyakov (1979), Makeenko and Migdal (1979).
Mandelstam’s relation:

y z

δσ

x

δU(y, z)

δσαβ(x)
= −igU(y, x)Fαβ(x)U(x, z),

where F is the field strength, Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]. Derive
with respect to x (∇ is the covariant derivative):

∂

∂xµ

δU(y, z)

δσαβ(x)
= −igU(y, x)(∇µFαβ(x))U(x, y).
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∂

∂xµ

δU(y, z)

δσαβ(x)
= −igU(y, x)(∇µFαβ(x))U(x, y).

Specialize to closed contours C (Wilson loop averages).
Cyclic permutations of the indices (µ, α, β): The Bianchi identity. =⇒

ενµαβ ∂

∂xµ

δW (C)

δσαβ(x)
= 0.

Contraction of µ and α: Equation of motion of the gluon field (in
the large-Nc limit internal quark contributions can be neglected).
∇αFαβ(x) ∼ δ/δAβ(x). Only points that are at x can contribute. Apart
from x itself, these are the self-intersecting points on C.

5



Cyx

y

C = {Cyx, Cxy}

Cxy

x

In the large-Nc limit:

∂

∂xα

δW (C)

δσαβ

= −ig
2Nc

2

∮

C

dyβδ4(y − x)W (Cyx)W (Cxy).

Loop equations or Makeenko-Migdal equations.
Equations solved in two dimensions by Kazakov and Kostov (1980).
Solutions in terms of the areas delimited by the closed contours.
Renormalizability: Dotsenko and Vergeles (1980) and Brandt et al.
(1981).
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For large contours and at large Nc, Makeenko and Migdal showed
that minimal surfaces are asymptotic solutions to the loop equations.
They also satisfy in general (for simple enough contours) the
factorization property.

Our starting point is the idea that minimal surfaces can represent, for
large distances and at large Nc, solutions to the Wilson loop averages.

W (C) = e−iσA(C).

One can show the following properties.
1) Among various types of surface, having as support the contour C,
only the minimal surface satisfies the Bianchi identity.
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2) The loop equation is satisfied by the minimal surface provided one
defines the unrenormalized coupling constant g through the following
relation with the string tension σ:

g2Nc = lim
a→0

Cσa2.

But in the presence of short-distance effects, g is defined in terms of
ΛQCD and vanishes logarithmically with the regulator. In that case,
the minimal surface represents only a partial contribution to the Wilson
loop average and it is the junction between large and short distances
that should determine the relation between σ and ΛQCD. Problem not
yet solved exactly.
We consider henceforth only large-distance contributions.
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Some mathematical properties of minimal surfaces

Any local deformation of the contour modifies the minimal surface in
its internal part.

The new minimal surface is no longer plane.
The deformations inside the minimal surface can be calculated in terms
of the deformations of the contour with the aid of the Green function
of the defining equation of the minimal surface (Lüscher, Symanzik,
Weisz, 1980).
Problem exactly solved when the initial or background minimal surface
is plane. In general, rigid deformations of the contour along finite parts
can be calculated as superpositions of local deformations.
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Quark-antiquark bound states

G ≡ 〈ψ2(x2)U(x2, x1)ψ1(x1)ψ1(x
′
1)U(x′1, x

′
2)ψ2(x

′
2)〉A,q1,q2

.

U taken along straight lines.
Integrate with respect to the quark fields (large-Nc).

G = −〈trcU(x2, x1)S1(A;x1, x
′
1)U(x′1, x

′
2)S2(A;x′2, x2)〉A.

S(A) is the quark propagator in the presence of the external gluon field
A. (

iγ.∂(x) −m− gγ.A(x)
)
S(A;x, x′) = iδ4(x− x′).
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x1 x′1

x2
x′2

U

S2(A)

S1(A)

U
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Action of the Dirac operators on G:

(iγ.∂(x1) −m1)G = −i〈trcUδ
4(x1 − x′1)US2〉A

−iγα〈trc

∫ 1

0

dλ(1 − λ)
δU(x2, x1)

δxα(λ)
S1US2〉A,

G(−iγ.
←

∂ (x2) −m2) = −i〈trcUS1Uδ
4(x′2 − x2)〉A

+i〈trc

∫ 1

0

dλλ
δU(x2, x1)

δxβ(λ)
S1US2〉Aγβ.

x1 x′1

x2
x′2
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Representation for S(A)

Expand S(A) around the free propagator with insertions of phase
factors U . [

S̃(x, x′)
]a

b
≡ S0(x− x′)

[
U(x, x′)

]a

b
.

S(A) then satisfies the following integral equation, which can be
converted into an iteration series:

S(x, x′) = S̃(x, x′) −
∫
d4x′′S(x, x′′)γα

∫ 1

0

dλλ
δ

δxα(λ)
S̃(x′′, x′).

= +
S(A)

S(A)

eS
eS

(Generalization of the static case; Eichten and Feinberg, 1981.)
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This leads to a series expansion of G in terms of Wilson loops.

G =
∞∑

i,j=1

Gi,j,

where Gi,j can be expressed in terms of a Wilson loop along a skew-
polygonal contour with (i+ 1) + (j + 1) vertices.
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x2 x′2
z1

G =

+ · · · Gi,j
+ · · · .

+ G2,2 + G3,1 + G1,3

z1

y1

y1

y2

z1

z2

G1,2+G2,1+G1,1

x1
x′1

y1
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The two Dirac-type equations become now:

(iγ.∂(x1) −m1)G = −iδ4(x1 − x′1)
∞∑

j=1

G0,j

+iγα

∞∑

i,j=1

∫ 1

0

dλ(1 − λ)
δ

δxα(λ)
Gi,j

∣∣∣∣
x(λ)∈x1x2

,

G(−iγ.
←

∂ (x2) −m2) = +iδ4(x2 − x′2)
∞∑

i=1

Gi,0

−i
∞∑

i,j=1

∫ 1

0

dλλ
δ

δxβ(λ)
Gi,jγ

β

∣∣∣∣
x(λ)∈x1x2

.
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The two equations are compatible (integrable); mainly due to the
following property (which depends on the Bianchi identity):

(
δ

δxβ(λ′)

δ

δxα(λ)
− δ

δxα(λ)

δ

δxβ(λ′)

)
A(C) = 0.

=⇒ The relative time between x1 and x2 should not play any
dynamical role, its evolution law being determined by the difference
of the two equations.
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Each Gi,j contains (i+ j) functional derivatives of the Wilson loop.
The action of a new derivative along the segment x1x2 gives rise to
different categories of derivatives which can be grouped according to
their connectedness with respect to the minimal surface Ai,j.

For example, G2,1 is proportional to e−iσA2,1, but contains one
derivative along the segment y1x

′
1:

G2,1 ∼ δ

δy
e−iσA2,1

∣∣∣∣
y∈y1x′1

= −iσδA2,1

δy
e−iσA2,1.

The new derivative along x1x2 yields:

δ

δx
G2,1 ∼

[
(−iσ)2

δA2,1

δx

δA2,1

δy
− iσ

δ2A2,1

δxδy

]
e−iσA2,1

= −iσδA2,1

δx
G2,1 − iσ

δ2A2,1

δxδy
e−iσA2,1.
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We can thus group terms according to the number of derivatives of A
they contain (those containing necessarily δ/δx; those not containing
δ/δx are parts of the definitions of Gi,j).

We consider here in detail the case of terms proportional to one
derivative. (The other cases can be treated in a similar way.) One
thus has:

δ

δx(λ)
Gi,j

∣∣∣∣
x(λ)∈x1x2

= −iσδAi,j

δx
Gi,j + · · · .

=⇒

δ

δx(λ)
G

∣∣∣∣
x(λ)∈x1x2

=
∑

i,j

δ

δx
Gi,j =

∑

i,j

−iσδAi,j

δx
Gi,j + · · · .
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Replacing the above result in the right-hand side of the Dirac-type
equation for quark 1, one obtains:

(iγ.∂(x1) −m1)G = −iδ4(x1 − x′1)

∞∑

j=1

G0,j

+iγα

∞∑

i,j=1

∫ 1

0

dλ(1 − λ)(−iσ)
δAi,j

δxα(λ)

∣∣∣∣
x(λ)∈x1x2

Gi,j + · · · .

In order to have a bound state, it is necessary that both sides of the
equation have the same pole; the left-hand side involves G; the right-
hand side involves a series with Gi,j each with a different coefficient.
It necessary that the series sums up coherently to produce a term
containing G. (Each Gi,j does not have a pole, containing a finite
number of free quark propagators.)
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All minimal surfaces Ai,j have two common fixed segments, x1x2 and
x′1x
′
2. All Ai,j for i > 1 or j > 1 are fluctuating surfaces around the fixed

surface A1,1:

A1,1

x2
x′2

x′1
x1

Therefore, each derivative δAi,j/δx can be expanded around the fixed
derivative δA1,1/δx, their differences representing fluctuation effects:

δAi,j

δx
=
δA1,1

δx
+ fluctuations.
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Replacing the above expansion in the Dirac-type equation, one
obtains:

(iγ.∂(x1) −m1)G = −iδ4(x1 − x′1)

∞∑

j=1

G0,j

+iγα

∞∑

i,j=1

∫ 1

0

dλ(1 − λ)(−iσ)
δA1,1

δxα(λ)

∣∣∣∣
x(λ)∈x1x2

Gi,j + fluctuations + · · · ,

(iγ.∂(x1) −m1)G = −iδ4(x1 − x′1)
∞∑

j=1

G0,j

+σγα

∫ 1

0

dλ(1 − λ)
δA1,1

δxα(λ)

∣∣∣∣
x(λ)∈x1x2

G+ fluctuations + · · · .
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Fluctuation terms add up incoherently; they cannot contribute to pole
terms. One obtains the bound state equation:

(iγ.∂(x1) −m1)Φ = σγα

∫ 1

0

dλ(1 − λ)
δA1,1

δxα(λ)

∣∣∣∣
x(λ)∈x1x2

Φ,

Φ = −i < 0|ψ2(x2)U(x2, x1)ψ1(x1)|P > .

Plus additional contributions to the kernel of the equation coming
from higher-order derivatives of minimal surfaces involving always δ/δx
along x1x2. These will not be considered here.

A similar equation is obtained with the Dirac operator of the antiquark.

δA1,1/δx is calculated in the limit of large time separation between
x1x2 and x′1x

′
2, which defines the bound state limit.
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After eliminating the relative time in the cm frame, one obtains a
reduced equation of the Breit-Salpeter type:

[
P0 − (h10 + h20) − γ10γ

µ
1A1µ − γ20γ

µ
2A2µ

]
ψ = 0,

where h10 and h20 are the free Dirac Hamiltonians and the potentials
A are defined as

A1µ = σ

∫ 1

0

dλ(1 − λ)
δA1,1

δxµ(λ)
, A2µ = σ

∫ 1

0

dλλ
δA1,1

δxµ(λ)
.
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The functional derivative δ/δx(λ) acts on the surface A1,1 as

δA1,1

δxα(λ)
= −

√
−x′2 ẋtα(λ)√

ẋt2(λ)
.

x′ = x2 − x1; ẋtα/
√
ẋt2 is the slope of the surface in the orthogonal

direction to x′ at x(λ).
One associates this slope with the momenta of the quarks.

The interaction potential, which is vector-like, is relativistic and valid
for any kind of quark masses.
It is a nonlocal function of the quark three-momenta (in the cm frame).
It contains, as a leading part, the linear confining potential σr.
The contributions of the relativistic efects can be best understood by
considering particular limits.
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One-particle limit

One of the quarks is infinitely massive.

[
p10 − h10 −A0 + γ10γ.A

]
ψ = 0.

Taking further the limit of a heavy quark for the remaining quark, one
has for the potentials to order 1/c2:

A0 = σr
(
1 +

L2

6m2
1r

2

)
, A =

σr

3

pt

m1
.

(r = |x| = |x1 − x2|; L: orbital angular momentum of the quark; pt :

quark momentum orthogonal to x.)
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Interpretation: The interaction potentials are represented by the
energy-momentum vector of the straight-segment joining the two
quarks and carrying a linear energy density σ.
σr : the static energy of the straight-segment.
σrL2/(6m2

1r
2) : its rotational energy.

σrpt/(3m1) : its rotational momentum.
The corresponding Hamiltonian, in two-component spinor-space, is:

H =
p2

2m1
+ σr − 2h̄σ

πm1
− (p2)2

8m3
1

+
h̄2

4m2
1

σ

r

− σ

6r

1

m2
1

(
L2 + 2h̄2

)
+
σ

2r

L.s1

m2
1

− 2σ

3r

L.s1

m2
1

.

Notice the presence of new terms in L2 and L.s1 with respect to
the usual timelike vector potentials, due to the contributions of the
moments of inertia of the straight-segment.
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Two-particle nonrelativistic limit

H
∣∣∣
cm

=
p2

2µ
+ σr − 2h̄σ

π

( 1

m1
+

1

m2

)
− 1

8

( 1

m3
1

+
1

m3
2

)
(p2)2

+
h̄2

4

( 1

m2
1

+
1

m2
2

)σ
r
− σ

6r

( 1

m2
1

+
1

m2
2

− 1

m1m2

)
(L2 + 2h̄2)

+
σ

2r

(L.s1

m2
1

+
L.s2

m2
2

)

−2σ

3r

( 1

m2
1

− 1

2m1m2

)
L.s1 −

2σ

3r

( 1

m2
2

− 1

2m1m2

)
L.s2.

Absence of large-distance spin-spin forces. Additional contributions in
the orbital angular momentum and spin-orbit terms coming from the
moments of inertia of the straight-segment.
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Nonrelativistic limit with the Wilson loop studied previously by several
authors.

Eichten, Feinberg (1981); Gromes (1984);

Prosperi, Brambilla et al. (1988-1990);

Brambilla, Pineda, Soto, Vairo (2001).
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Chiral symmetry breaking can be studied by incorporating into the
previous equation the quark self-energy parts contained in the higher-
order potentials.

The resulting situation is very similar to that obtained in a theory with
the exchange of a Coulomb-gluon. Self-energy equations similar to
those studied previously by several authors:

Mandula et al. (1980-1984); Le Yaouanc et al. (1983-1985); Adler,
Davis (1984); Alkofer, Amundsen (1988); Lagaë (1992).

Numerical values are, however, very small. One finds < uu >'
−(115MeV)3 and Fπ ' 15MeV, to be compared to the QCD sum rule
prediction (Narison) < uu >' −(225MeV)3 and the experimental value
Fπ ' 94MeV.

Short-distance effects are not yet considered.
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For light quarks, linear Regge trajectories are produced with slopes
that are 15-20% larger than for the case of the pure timelike vector
linear potential. The classical relationship between the Regge slope
and the string tension, α′ = (2πσ)−1, is enforced. (Olsson, 1989).
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Does the type of the phase factor line C has any influence on the
energy spectrum?
ψ(x2)U(C1;x2, x1)ψ(x1)

Problem easily studied in the static case. Quark propagators can
be converted into phase factors along straight-lines along the time
direction. One ends up with a Wilson loop with the following contour.

x1
C1

x′1

x′2x2

T

C′1

For finite time difference T , form of the minimal surface rather
complicated. But in the limit T → ∞, which displays the energy
spectrum, the minimal surface shrinks to the union of the three
independent minimal surfaces of the rectangle and of the two lateral
contours. But the latter are independent of T .
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=⇒ The energy spectrum is determined by the rectangle (dependent
on T ), while the lateral contours contribute only to the wave functions.
Therefore, without loss of generality, one can consider straight lines for
the phase factors joining the quarks to each other.

To study the spectra of hybrids (genuine gluoinic excitations), it is
necessary to consider explicit gluon field strength insertions inside the
phase factor lines:
ψ(x2)U(C2;x2, z)Fµν(z)U(C1; z, x1)ψ(x1).
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