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Hadronic atoms:
Bound states of hadrons, formed by Coulomb attraction.

(π−p), (π−d), (π+π−), (π+K−), (K−p), (K−d).

Because of electromagnetic mass differences, these atoms decay by
strong interaction into isospin partners.

(π−p) → π0n,

(π+π−) → π0π0,

(π+K−) → π0K
0
,

(K−p) → K
0
n, Λπ0, Σ0π0.
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For the πK atom, one has the process:

K+

K0

π−
π0

Because of the instability of the π and K mesons, it is not possible to
do direct low-energy πK → πK scattering experiments.

Generally, on experimental grounds, the scattering lengths are
reconstituted by extrapolating high-energy data (above 0.9 GeV) down
to threshold. Big uncertainties.

Here, the decay widths and energy shifts of the πK atom states give
us direct information on the πK → πK scattering lengths.
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Theoretical interest of the scattering lengths

They are related to order parameters of spontaneous breaking of
chiral symmetry in QCD. They give in particular information about the
quark condensate and through it on the mechanism of chiral symmetry
breaking and about the role of quark flavors in it.

The scattering lengths are calculable in Chiral Perturbation Theory.

In the absence of electromagnetism and in the isospin symmetry limit,
two isospin-fixed, I = 1/2, 3/2, scattering lengths with each orbital
angular momentum ℓ. We are mainly concerned with the S-wave
scattering lengths a

I=1/2
ℓ=0 and a

I=3/2
ℓ=0 . One also defines the isospin

even and odd combinations:

a+
0 =

1

3
(a

1/2
0 + 2a

3/2
0 ), a−

0 =
1

3
(a

1/2
0 − a

3/2
0 ).
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Summary of ChPT (chiral perturbation theory) predictions.

Authors ChPT mπa
1/2
0 mπa

3/2
0

Weinberg (1966) Tree 0.14 −0.07

Bernard et al. (1991) One-loop 0.19 ± 0.02 −0.05 ± 0.02

Bijnens et al. (2004) Two-loop 0.220 −0.047

An extrapolation of high-energy experimental data, using Roy and
Steiner equations (dispersion relations, crossing symmetry and partial
wave decomposition), has been done by Büttiker, Descotes-Genon and
Moussallam (2004). The results are:

mπa
1/2
0 = 0.224 ± 0.022, mπa

3/2
0 = −(0.448 ± 0.077) × 10−1.

Convergence of the theoretical calculations towards the experimental
values.
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Deser et al. formulas

Using the short-range character of the strong interaction, Deser et al.
(1954) have obtained formulas in the nonrelativistic limit for the decay
width and energy shift of hadronic atoms (with quantum numbers
(n, ℓ)).

E
(0)
n,ℓ = −µα2

2n2
(Coulomb binding energy),

∆En,ℓ = −2µ2 α3

n3

(
a+
0 + a−

0

)
δℓ,0 (energy shift),

Γn,ℓ = 8 p∗n0 µ2 α3

n3

(
a−
0

)2
δℓ,0 (decay width).

µ: reduced mass of the πK system.
p∗n0: the c.m. momentum of the neutral mesons (π0K0) after the decay
of the bound state with quantum numbers (n, 0).

6



Experimental measurement of the lifetime and of the energy shift
allow us to obtain the values of the scattering lengths.

Numerically:

E0
10 = −2898.61 eV, τ10 = (3.7 ± 0.5) × 10−15 s,

∆E10 = −8.86 eV, ∆E20 = −1.11 eV,

E21 − E20 = 1.11 eV.

However, these predictions do not include relativistic corrections,
neither electromagnetic radiative corrections, nor isospin symmetry
breaking effects. Corrections of a few per cent expected. In pionium
(π+π−), there was found 6% corrections in the decay width.
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Necessity of evaluating higher-order corrections to the Deser et al.
formulas to have a precise test of ChPT.

A similar problem met with the pionium (π+π−). Many theoretical
works on the subject. DIRAC experiment at CERN.

For the (πK) atom, experimental projects at CERN, GSI and J-PARC.

Theoretical calculations done by J. Schweizer (2004), using the
nonrelativistic effective theory approach developed by Caswell and
Lepage (1986).

We analyse the problem with the constraint theory - quasipotential
method approach.

- Bound state formalism,
- πK system.
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Bound state formalism
Constraint theory (Dirac, 1964) allows, through the use of first-class

constraints, the elimination of redundant variables, respecting at the
same time the symmetries of the theory (in the present case the
Poincaré invariance). Relative energies and relative times of particles
of multiparticle systems should not play a dynamical role in relativistic
theories. For a two-particle system, with momenta p1 and p2 and
physical masses m1 and m2, the following constraint eliminates the
relative energy in a covariant way:

C(P, p) ≡ (p2
1 − p2

2)− (m2
1 −m2

2) = 0, P = p1 + p2, p =
1

2
(p1 − p2).

Also respects the symmetry between the two particles and remains
valid on the mass shell and in the free case.

9



Two spin-0 particles, 1 and 2. T : the scattering amplitude of the
process 1 + 2 → 1′ + 2′. We define:

T̃ =
i

2
√

s
T
∣∣∣
C
.

(Constraint C applied on external momenta of T . s = P 2.)

Postulate: T̃ satisfies, by means of an effective propagator g0, a
three-dimensional Lippmann–Schwinger type equation leading to the
definition of a kernel or a potential V :

V = T̃ − V g0 T̃ .

The expression of g0 is chosen so that V is hermitian in the elastic
unitarity region.
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Constraint C implies equality of the Klein-Gordon operators of
particles 1 and 2:

H0(s,p) ≡ (p2
1 − m2

1)
∣∣
C

= (p2
2 − m2

2)
∣∣
C

= b2
0(s) − p2,

b2
0(s) ≡

s

4
− 1

2
(m2

1 + m2
2) +

(m2
1 − m2

2)
2

4s
.

(Written in the c.m. frame.) g0 is chosen as the propagator associated
with these operators:

g0(s,p) =
1

H0(s,p) + iε
=

1

b2
0(s) − p2 + iε

.
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The Lippmann-Schwinger type equation V = T̃ − V g0 T̃ defines an
iterative series for V , where the integrations are three-dimensional.
In addition to the usual Feynman diagrams of T , one has three-
dimensional diagrams in which the constraint C is used (“Constraint
diagrams”). If

T̃ = T̃1 + T̃2 + T̃3 + · · · ,

then
V = T̃1 + T̃2 − T̃1g0T̃1 + · · · .

×
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If T has a pole in s, one deduces from the above equation a three-
dimensional covariant bound state equation:

[
g−1
0 − V

]
Ψ = 0.

Perturbation theory

V = V1 + V2,

such that the solutions associated with V1 are known: eigenvalues s
(0)
n

and wave functions ϕn. G1 is the Green function associated with V1:

G1 = g0 + g0 V1 G1 = G′
1 +

ϕnϕ†
n

(s − s
(0)
n + iε)

.

13



The complete Green function G satisfies the equation

G = G1 + G1V2G.

One obtains a perturbative series for the complete eigenvalue sn in
terms of matrix elements of V2:

sn = s(0)
n +

{
(ϕ†

n V2 ϕn)+(ϕ†
n V2 G′

1 V2 ϕn)+(ϕ†
n V2 ϕn)(ϕ†

n

∂V2

∂s
ϕn)

}∣∣∣∣
s=s

(0)
n

+ · · · .

Lepage (1977), Bodwin and Yennie (1978), Gasser et al. (2001).
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πK system
Treat the πK system by means of a coupled channel formalism

including the charged sector (c) made of π−K+ and the neutral sector
(n) made of π0K0.

Because of the decay process π−K+ → π0K0, the energy of the
bound state becomes complex with a negative imaginary part. The
scattering amplitudes and Green functions involving the above sectors
have a common pole at the position of the complex energy of the bound
state. We introduce a two-component wave function Ψ as:

Ψ =

(
Ψc

Ψn

)
.
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The potential V is defined in matrix form in the corresponding space:

V =

(
Vcc Vcn

Vnc Vnn

)
.

The iteration effective propagator g0 is now composed of two
propagators:

g0 =

(
g0c 0

0 g0n

)
.

g0c and g0n are defined with the physical masses of the charged and
neutral particles, respectively.
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The wave equation takes now the form of two coupled equations:

(
g−1
0c − Vcc

)
Ψc − VcnΨn = 0,

−VncΨc +
(
g−1
0n − Vnn

)
Ψn = 0.

The wave function Ψn represents an outgoing wave created by the
charged state; it can be eliminated in favor of Ψc, yielding the wave
equation for the latter wave function:

g−1
0c Ψc = VccΨc + Vcn

(
1 − g0nVnn

)−1

g0nVncΨc.

This is the bound state equation describing the properties of the πK

atom.
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The potentials V are calculated from the Lippmann–Schwinger
type equation, written now in matrix form in terms of the scattering
amplitudes of the processes π−K+ → π−K+, π−K+ → π0K0,
π0K0 → π−K+, π0K0 → π0K0.

When electromagnetism and isospin symmetry breaking are
switched-off, one remains with the strong interaction or hadronic
amplitudes T̃h in the isospin symmetry limit; these are related to the
isospin invariant amplitudes T̃ I from which one defines the strong
interaction scattering lengths a

1/2
ℓ and a

3/2
ℓ that we have met.
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Perturbation theory

Perturbation theory is developed by considering the Coulomb
potential as the zeroth-order potential:

Vcc = 2µVC + V cc, VC = −α

r
.

The (complex) expression of the energy shift is:

2µ∆En =

{
ϕ†

nℓ V cc ϕnℓ + ϕ†
nℓ Vcn g0n Vnc ϕnℓ + ϕ†

nℓ V cc
G′

C

2µ
V cc ϕnℓ

+ϕ†
nℓ

(
V cc

G′
C

2µ
Vcn g0n Vnc + Vcn g0n Vnc

G′
C

2µ
V cc

)
ϕnℓ

}∣∣∣∣
E=E

(0)
n

−
(m2

π− + m2
K+ − m

π−m
K+

(m
π− + m

K+)2

)
E(0)2

n .
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Orders of magnitude of various terms are then evaluated by using the
counting rules of QED bound states.

Coulomb bound state energies are of order α2.

Next corrections come from strong interaction, which gives terms of
order α3; these correspond to the Deser et al. formulas.

We are interested by the O(α) corrections to the latter (O(α4) terms).
They originate from three sources:

- Pure electromagnetic corrections.
- Interference terms between strong interaction and electromagnetism,
including isospin symmetry violation.
- Second-order effects of perturbation theory.
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Electromagnetic interaction

Pure electromagnetic corrections arise in the channel
π−K+ → π−K+ from one- and two-photon exchange diagrams and
also include vacuum polarization contribution.

×

Contribute only to the real part of the energy shift. Most important
contribution from vacuum polarization (25% of the strong interaction
effect of order α3).
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Strong interaction in the presence of electromagnetism

Strong interaction effects calculated with the aid of the chiral
effective Lagrangian. The latter is built as a low-energy perturbation
expansion in the external momenta of the Goldstone bosons (π, K, η)
and the quark masses. At each order of the perturbation series,
renormalization introduces new coupling constants, called low-energy
constants, which are in general measurable quantities.

Strong interaction in the presence of electromagnetism and isospin
symmetry breaking was considered by Urech (1995). One dozen of
new low-energy constants, which are still poorly known and are the
source of uncertainties. One considers them through their order of
magnitude (1/(16π2)).
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Typical diagrams with one photon exchange are:

×

Were evaluated by Nehme and Talavera (2002) and Kubis and
Meissner (2002). The shifts are:

∆Ehγ,n0 = (1.1 ± 3.2) × 10−2 × E
(1)
h,n0,

∆Γhγ,n0 = (2.4 ± 1.4) × 10−2 × Γ
(1)
h,n0.

It is hoped that more accurate evaluations of the electromagnetic low-
energy constants (with sum rules and resonance saturations) will allow
one in the future to reduce substantially the above uncertainties.
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Second order of perturbation theory

Main contributions come from hadronic-hadronic type correlators and
from hadronic-vacuum polarization type interferences.

In total of the order of 1% in the real energy shift and 2% in the decay
width.

Our results are in agreement with those found by J. Schweizer.
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Summary of results

We collect the three types of correction: pure electromagnetism,
strong interaction in the presence of electromagnetism, second-order
of perturbation theory.

The decay width of the ground state is:

Γ10 = 8p∗10µ
2α3

(
a−
0

)2 (
1 + 0.046 ± 0.014

)
.

The energy splitting between the 2P and 2S states is:

(
E21 − E20

)
= 1

4µ
2α3

(
a+
0 + a−

0

) (
1 + 0.023 ± 0.032

)
+ 0.29 (eV).

These formulas allow one to extract from the experimental results
on the decay width and the energy splitting the values of the strong
interaction scattering lengths a−

0 and a+
0 .
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